PARADIGM (Social Science)

A paradigm is a template, model, or framework. Paradigms can be used to create new objects, just as templates can be used as patterns when outlining or designing something new. In fact, the word paradigm has its roots in the Greek term for a side-by-side comparison. Within the philosophy of science, a paradigm is a general but distinct worldview or theory. The history of science is characterized by paradigm shifts.

The seminal work on paradigm shifts is that of Thomas Kuhn (1922-1996). His 1962 monograph, The Structure of Scientific Revolutions, described what is essentially a form of nonlinear progress within the sciences. Put simply, during phases of what Kuhn called "normal science," individuals working in a scientific field share assumptions, perspectives, and methods, and knowledge accumulates in a linear fashion. There is progress, but all of the knowledge and information is constrained by the same set of premises and assumptions. It is in this sense that it is conceptually linear. Eventually the assumptions are brought into question and the inadequacies and limitations of the theories being used are recognized. At that point one or more assumptions may be questioned, and new empirical results may be difficult or impossible to explain. It is not just one theory or method that is inadequate; instead, the fundamental assumptions of a field are brought into question. A bit later an alternative perspective or paradigm is introduced that is so dramatically different from what came before it that the shift is clearly not just an extension of what came before, but a fundamental and overarching change within the field. Examples of major paradigm shifts underscore the magnitude of these paradigm shifts: Einstein’s theory of relativity is enormously different from the Newtonian physics that preceded it; Copernicus initiated a revolution of a similar magnitude; Darwin changed the way biologists thought about the Homo sapiens, and stimulated modern reconsideration of humanity’s role within nature.


Convergent thinking is not very original nor creative. It involves finding conventional or correct answers and solutions to fairly well-defined questions and problems. Divergent thinking, in contrast, is often original and creative. It involves exploring new options; the thinking moves in different and often original and unconventional directions.

Kuhn (1963) also referred to the convergent and divergent thinking involved in normal science and in paradigm shifts. He felt there was "an essential tension" between them, and one that stimulated creative thinking as well as paradigm shifts. Kuhn wrote: "Something like convergent thinking is just as essential to scientific advance as is divergent. Since those two modes of thought are inevitably in conflict, it will follow that the ability to support tension that can occasionally become almost unbearable is one of the prime requisites for the very best sort of scientific research" (1963, p. 342).

Paradigm shifts introduce new rules and new problem-solving techniques. In fact, they often introduce new problems as well as solutions. This may sound odd, but such problem discovery is distinct from problem solving, and is an important part of the creative process. Psychologists studying creativity even include problem-finding skills as part of the creativity complex. There is more to paradigm shifts: They also introduce new taxonomies, new classifications of the phenomena under study, and new ideas. Significantly, much of the new thinking that characterizes new paradigms is precon-scious. Indeed, many of the differences between paradigms (e.g., Newton’s and Einstein’s) reflect assumptions, which of course are by definition not consciously processed.

Nickles used two tree metaphors to describe the reclassifications that occur during normal science and those that occur during paradigm shifts. The former can be viewed as branching, where new findings and ideas suggest additional specific branches to the tree of knowledge (or perhaps remove an old branch). The research on creative thinking can itself be used as an example. At one point, creative thinking was equated with problem solving. That was the tree, so to speak, and new theories merely identified new kinds of problem solving. Then behavioral scientists realized that thinking is often the most creative when the individual actually identifies a new problem, rather than merely solves an existing problem. Nickles referred to this kind of breakthrough as "tree switching" because an entirely new tree—not just a new branch—is introduced. In dramatic paradigm shifts such as Einstein’s, the old tree is completely dismissed. Nickles gave Mendeleev’s theory of the periodic table of elements and Darwin’s theory of evolution as examples of tree switching and true paradigm shifts.

Kuhn himself described normal science as progressing by working with exemplars. The basic idea here is that problem solving during a period of normal science depends on identifying similarities among problems and questions; and once the similarity is identified, a solution (which is itself analogous to previous solutions) is suggested. Kuhn even applied this to science education, where instruction and the curriculum rely on exemplars, analogies, and similarities. Paradigm shifts, in contrast, involve what Kuhn called "new disciplinary matrices." This was Kuhn’s way of describing tree switching and entirely new perspectives within the sciences.

Note that disciplinary matrices are, for Kuhn, within the sciences. Indeed, Kuhn’s theory of paradigm shifts initially focused on the hard sciences. The example above, concerning problem-solving and -finding extends this to the social and behavioral sciences. But the concept of paradigm shifts is now used much more broadly, even outside the sciences. The idea of paradigm shifts and the suggestion of questioning assumptions and nonlinear progress has proven to be very useful in organizational theory and management, for instance, and a large number of articles and programs outlined in business periodicals tie paradigm shifts to innovation. According to Nickles (1999), political debates and advertisements also regularly refer to paradigm shifts. Whether or not these meet the criteria presented by Kuhn is dubious, but the assumption that dramatic shifts of some sort are useful for creativity and innovation is obviously quite useful.

Criticisms of the theory of paradigm shifts underscore the retrospective and even post hoc method used by Kuhn, as well as the implication that normal science relies so heavily on analogies and "acquired similarity relations" (exemplars). Critics often note that normal science is much more inventive and creative than the original theory of paradigm shifts allowed. Alternative conceptions of scientific progress include the evolutionary perspective whereby changes do occur but they are more linear, perhaps the result of a natural selection process. If this is accurate, progress—even highly creative advance—is more gradual and less sudden than described by paradigm shifts. Of course, the interesting thing here is that the evolutionary perspective is itself an analogy, taken from the biological sciences. Still, it is no doubt useful to recognize that paradigm shifts themselves represent one theoretical framework and one set of assumptions. The theory is enormously useful, but not the final word on progress. If it was the final word, the theory of paradigm shifts would, in a manner of speaking, refute itself.

Next post:

Previous post: