Amber Mutation (Molecular Biology)

An amber mutation is a nonsense mutation that changes a sense codon (one specifying an amino acid) into the translational stop codon UAG, causing premature termination of the polypeptide chain during translation. The mutation, the codon, and the mutant are all called amber. Amber mutations arise by single base changes in the codons for eight amino acids (and in the UAA stop codon, although this is not a nonsense mutation). Mutations in the anticodons of the transfer RNAs that read those eight codons, in principle, could give rise to amber suppressors, but suppressors are recovered only if another tRNA exists that reads the codon. In Escherichia coli, five amber suppressors that arise by a single base change have been identified. In addition, amber mutations are suppressed by ochre suppressors because of wobble pairing in the third position (5′ ) of the anticodon. Amber mutations in E. coli and its bacteriophages are easily identified by their pattern of suppression by known suppressors. In bacteria, amber suppressors have relatively mild effects. Many laboratory strains and even natural isolates of E. coli carry amber suppressors. This might be surprising, because amber suppressors are expected to prevent the proper termination of many proteins, but amber codons are used relatively infrequently in E. coli and related bacteria.

The name amber was originally given to mutants of bacteriophage T4 that grow on E. coli strain K12 (l) but not on E. coli strain B (1). It turned out that the K12 strain used has an amber suppressor, whereas the B strain does not. The word amber was inspired by Harris Bernstein who participated in the original experiment (Bernstein means amber in German), although published versions of the story disagree on whether the mutants were named after Harris Bernstein himself or his mother (2, 3). It also could be significant that at nearly the same time that amber mutants were being discovered, Seymour Benzer was also analyzing nonsense mutations in the rll genes of phage T4 and calling them "ambivalent" (4).

Next post:

Previous post: