Ceramics

Ceramics are inorganic, nonmetallic materials processed or consolidated at high temperature. Ceramics, one of the three major material families, are crystalline compounds of metallic and nonmetallic elements. The ceramic family is large and varied, including such materials as refractories, glass, brick, cement and plaster, abrasives, sanitaryware, dinnerware, artware, porcelain enamel, ferroelectrics, ferrites, and dielectric insulators. There are other materials that, strictly speaking, are not ceramics, but that nevertheless are often included in this family. These are carbon and graphite, mica, and asbestos. Also, intermetallic compounds, such as alu-minides and beryllides, which are classified as metals, and cermets, which are mixtures of metals and ceramics, are usually thought of as ceramic materials because of similar physical characteristics to certain ceramics.

Ceramic materials can be subdivided into traditional and advanced ceramics. Traditional ceramics include clay-base materials such as brick, tile, sanitaryware, dinnerware, clay pipe, and electrical porcelain. Common-usage glass, cement, abrasives, and refractories are also important classes of traditional ceramics.

Advanced materials technology is often cited as an "enabling" technology, enabling engineers to design and build advanced systems for applications in fields such as aerospace, automotive, and electronics. Advanced ceramics are tailored to have premium properties through application of advanced materials science and technology to control composition and internal structure. Examples of advanced ceramic materials are Si3N4, SiC, toughened ZrO2, ZrO2-toughened Al2O3, AlN3, PbMg nio-bate, PbLa titanate, SiC-whisker-reinforced Al2O3, carbon-fiber-reinforced glass ceramic, SiC-fiber-reinforced SiC, and high-temperature superconductors. Advanced ceramics can be viewed as a class of the broader field of advanced materials, which can be divided into ceramics, metals, polymers, composites, and electronic materials. There is considerable overlap among these classes of materials.


Advanced ceramics can be subdivided into structural and electronic ceramics based on primary function or application. Optical and magnetic materials are usually included in the electronic classification. Structural applications include engine components, cutting tools, bearings, valves, wear- and corrosion-resistant parts, heat exchangers, fibers and whiskers, and biological implants. The electronic-magnetic-optic functions include electronic substrates, electronic packages, capacitors, transducers, magnets, waveguides, lamp envelopes, displays, sensors, and ceramic superconductors. Thermal insulation, membranes, and filters are important advanced ceramic product areas that do not fit well into either the structural or the electronic class of advanced ceramics.

Advanced ceramics are differentiated from traditional ceramics such as brick and porcelain by their higher strength, higher operating temperatures, improved toughness, and tailorable properties. Also known as engineered ceramics, these materials are replacing metals in applications where reduced density and higher melting points can increase efficiency and speed of operation. The nature of the bond between ceramic particles helps differentiate engineering ceramics from conventional ceramics. Most particles within an engineering ceramic are self-bonded, that is, joined at grain boundaries by the same energy-equilibrium mechanism that bonds metal grains together. In contrast, most nonengineering ceramic particles are joined by a so-called ceramic bond, which is a weaker, mechanical linking or interlocking of particles. Generally, impurities in nonengineer-ing ceramics prevent the particles from self-bonding.

A broad range of metallic and nonmetallic elements are the primary ingredients in ceramic materials. Some of the common metals are aluminum, silicon, magnesium, beryllium, titanium, and boron. Nonmetallic elements with which they are commonly combined are O2, carbon, or N2. Ceramics can be either simple, one-phase materials composed of one compound, or multiphase, consisting of a combination of two or more compounds. Two of the most common are single oxide ceramics, such as alumina (Al2O3) and magnesia (MgO), and mixed oxide ceramics, such as cordierite (magnesia alumina silica) and forsterite (magnesia silica). Other newer ceramic compounds include borides, nitrides, carbides, and silicides. Macrostructurally, there are essentially three types of ceramics: crystalline bodies with a glassy matrix; crystalline bodies, sometimes referred to as holocrystalline; and glasses.

The specific gravities of ceramics range roughly from 2 to 3. As a class, ceramics are low-tensile-strength, relatively brittle materials. A few have strengths above 172 MPa, but most have less than that. Ceramics are notable for the wide difference between their tensile and com-pressive strengths. They are normally much stronger under compressive loading than in tension. It is not unusual for a compressive strength to be five to ten times that of the tensile strength. Tensile strength varies considerably depending on composition and porosity.

One of the major distinguishing characteristics of ceramics, as compared to metals, is their almost total absence of ductility. They fail in a brittle fashion. Lack of ductility is also reflected in low impact strength, although impact strength depends to a large extent on the shape of the part. Parts with thin or sharp edges or curves and with notches have considerably lower impact resistance than those with thick edges and gently curving contours.

Ceramics are the most rigid of all materials. A majority of them are stiffer than most metals, and the modulus of elasticity in tension of a number of types runs as high as 0.3 to 0.4 million MPa compared with 0.2 million MPa for steel. In general, they are considerably harder than most other materials, making them especially useful as wear-resistant parts and for abrasives and cutting tools.

Ceramics have the highest known melting points of materials. Hafnium and TaC, for example, have melting points slightly above 3870°C, compared to 3424°C for tungsten. The more conventional ceramic types, such as Al2O3, melt at temperatures above 1927°C, which is still considerably higher than the melting point of all commonly used metals. Thermal conductivities of ceramic materials fall between those of metals and polymers. However, thermal conductivity varies widely among ceramics. A two-order magnitude of variation is possible between different types, or even between different grades of the same ceramic. Compared to metals and plastics, the thermal expansion of ceramics is relatively low, although like thermal conductivity it varies widely between different types and grades. Because the compressive strengths of ceramic materials are five to ten times greater than tensile strength, and because of relatively low heat conductivity, ceramics have fairly low thermal-shock resistance. However, in a number of ceramics, the low thermal expansion coefficient succeeds in counteracting to a considerable degree the effects of thermal conductivity and tensile-compressive-strength differences.

Practically all ceramic materials have excellent chemical resistance, and are relatively inert to all chemicals except hydrofluoric acid and, to some extent, hot caustic solutions. Organic solvents do not affect them. Their high surface hardness tends to prevent breakdown by abrasion, thereby retarding chemical attack. All technical ceramics will withstand prolonged heating at a minimum of 999°C. Therefore, atmospheres, gases, and chemicals cannot penetrate the material surface and produce internal reactions that are normally accelerated by heat.

Unlike metals, ceramics have relatively few free electrons and therefore are essentially non-conductive and considered to be dielectric. In general, dielectrical strengths, which range between 7.8 x 106 and 13.8 x 106 V/m, are lower than those of plastics. Electrical resistivity of many ceramics decreases rather than increases with an increase in impurities, and is markedly affected by temperature.

Fabrication Processes

A wide variety of processes are used to fabricate ceramics. The process chosen for a particular product is based on the material, shape, complexity, property requirements, and cost. Ceramic fabrication processes can be divided into four generic categories: powder, vapor, chemical, and melt processes.

Powder Processes

Traditional clay-base ceramics and most refractories are fabricated by powder processes as are the majority of advanced ceramics. Powder processing involves a number of sequential steps. These are preparation of the starting powders, forming the desired shape (green forming), removal of water and organics, heating with or without application of pressure to densify the powder, and finishing.

Vapor Processes

The primary vapor processes used to fabricate ceramics are chemical vapor deposition (CVD) and sputtering. Vapor processes have been finding an increasing number of applications. CVD involves bringing gases containing the atoms to make up the ceramic into contact with a heated surface, where the gases react to form a coating. This process is used to apply ceramic coatings to metal and tungsten carbide (WC) cutting tools as well as to apply a wide variety of other coatings for wear, electronic, and corrosion applications. CVD can also be used to form monolithic ceramics by building up thick coatings. A form of CVD known as chemical vapor infiltration (CVI) has been developed to infiltrate and coat the surfaces of fibers in woven preforms.

Several variations of sputtering and other vacuum-coating processes can be used to form coatings of ceramic materials. The most common process is reactive sputtering, used to form coatings such as TiN on tool steel.

Chemical Processes

A number of different chemical processes are used to fabricate advanced ceramics. The CVD process described above as a vapor process is also a chemical process. Two other chemical processes finding increasing application in advanced ceramics are polymer pyrolysis and sol-gel technology.

Melt Processes

These are used to manufacture glass, to fuse-cast refractories for use in furnace linings, and to grow single crystals. Thermal spraying can also be classified as a melt process. In this process a plasma-spray gun is used to apply ceramic coatings by melting and spraying powders onto a substrate.

Metal Oxide Ceramics

Although most metals form at least one chemical compound with O2, only a few oxides are useful as the principal constituent of a ceramic. And of these, only three are used in their fairly pure form as engineering ceramics: Al2O3, BeO, and ZrO2.

The natural alloying element in the Al2O3 system is SiO2. However, Al2O3s can be alloyed with chromium (which forms a second phase with the Al2O3 and strengthens the ceramic) or with various oxides of silicon, magnesium, or calcium.

Al2O3s serve well at temperatures as high as 1925°C provided they are not exposed to thermal shock, impact, or highly corrosive atmospheres. Above 2038°C, strength of Al2O3 drops. Consequently, many applications are in steady-state, high-temperature environments, but not where abrupt temperature changes would cause failure from thermal shock. Al2O3s have good creep resistance up to about 816°C above which other ceramics perform better. In addition, Al2O3s are susceptible to corrosion from strong acids, steam, and sodium. See Aluminum.

BeO ceramics are efficient heat dissipaters and excellent electrical insulators. They are used in electrical and electronics applications, such as microelectric substrates, transistor bases, and resistor cores. BeO has excellent thermal shock resistance (some grades can withstand 816°C/s changes), a very low coefficient of thermal expansion (CTE), and a high thermal conductivity. It is expensive, however, and is an allergen to which some persons are sensitive. See Beryllium.

ZrO2 is used primarily for its extreme inertness to most metals. ZrO2 ceramics retain strength nearly up to their melting point — well over 2205°C, the highest of all ceramics. Applications for fused or sintered ZrO2 include crucibles and furnace bricks. See Zirconium.

Transformation-toughened ZrO2 ceramics are among the strongest and toughest ceramics made. These materials are of three main types: Mg-PSZ (ZrO2 partially stabilized with MgO), Y-TZP (Y2O3 stabilized tetragonal ZrO2 poly-crystals), and ZTA (ZrO2-toughened Al2O3).

Applications of Mg-PSZ ceramics are principally in low- and moderate-temperature abrasive and corrosive environments — pump and valve parts, seals, bushings, impellers, and knife blades. Y-TZP ceramics (stronger than Mg-PSZ but less flaw tolerant) are used for pump and valve components requiring wear and corrosion resistance in room-temperature service. ZTA ceramics, which have lower density, better thermal shock resistance, and lower cost than the other two, are used in transportation equipment where they need to withstand corrosion, erosion, abrasion, and thermal shock.

Many engineering ceramics have multiox-ide crystalline phases. An especially useful one is cordierite (MgO-Al2O3-SiO3), which is used in cellular ceramic form as a support for a wash-coat and catalyst in catalytic converters in automobile emissions systems. Its low CTE is a necessary property for resistance to thermal fracture.

Glass Ceramics

Glass ceramics are formed from molten glass and subsequently crystallized by heat treatment. They are composed of several oxides that form complex, multiphase microstructures. Glass ceramics do not have the strength-limiting porosity of conventional sintered ceramics. Properties can be tailored by control of the crystalline structure in the host glass matrix. Major applications are cooking vessels, tableware, smooth cooktops, and various technical products such as radomes.

The three common glass ceramics, Li-Al-SiO3 (LAS, or beta spodumene), Mg-Al-SiO3 (MAS, or cordierite), and Al-SiO3 (AS, or aluminous keatite), are stable at high temperatures, have near-zero CTEs, and resist various forms of high-temperature corrosion, especially oxidation. LAS and AS have essentially no measurable thermal expansion up to 427°C. The high SiO2 content of LAS is responsible for the low thermal expansion, but the SiO2 also decreases strength. LAS is attacked by sulfur and sodium.

MAS is stronger and more corrosion resistant than LAS. A multiphased version of this material, MAS with AlTiO3, has good corrosion resistance up to 1093°C.

AS, produced by leaching lithium out of LAS particles prior to forming, is both strong and corrosion resistant. It has been used, for example, in an experimental rotating regenerator for a turbine engine.

A proprietary ceramic (Macor) called machinable glass ceramic (MGC), is about as strong as Al2O3. It also has many of the high-temperature and electrical properties of the glass ceramics. The main virtue of this material is that it can be machined with conventional tools. It is available in bars, or it can be rough-formed, then finish-machined. Machined parts do not require firing.

A similar glass ceramic is based on chemically machinable glass that, in its initial state, is photosensitive. After the glass is sensitized by light to create a pattern, it is chemically machined (etched) to form the desired article. The part can then be used in its glassy state, or it can be fired to convert it to a glass ceramic. This material/process combination is used where precision tolerances are required and where a close match to thermal expansion characteristics of metals is needed. Typical applications are sliders for disk-memory read/write heads, wire guides for dot-matrix printers, cell sheets for gas-discharge displays, and substrates for thick-film and thin-film metallization.

Another ceramic-like material, glass-bonded mica, the moldable/machinable ceramic, is also called a "ceramoplastic" because its properties are similar to those of ceramics, but it can be machined and molded like a plastic material. A glass/mica mixture is pressed into a preform, heated to make the glass flow, then transfer- or compression-molded to the desired shape. The material is also formed into sheets and rods that can be machined with conventional carbide tooling. No firing is required after machining.

The thermal-expansion coefficient of glass-bonded mica is close to that of many metals. This property, along with its extremely low shrinkage during molding, allows metal inserts to be molded into the material and also ensures close dimensional tolerances. Molding tolerances as close as ±0.01 mm can be held. Continuous service temperatures for glass-bonded mica range from cryogenic to 371 or 704°C depending upon material grade.

Next post:

Previous post: