DISASTER VICTIM IDENTIFICATION

Introduction

A mass disaster is a catastrophic event of such magnitude or severity that it overwhelms the resources of the community directly affected and their capacity to cope or respond without external assistance:
A national disaster is any natural phenomenon which causes such widespread human, material or environmental losses that the stricken community cannot recover without external assistance. (National Disaster Reduction Conference 1996).
There is almost always a substantial loss of life as well as damage to property and loss of crops and livestock.
It follows then that what may be a normal daily intake of bodies at a large, busy, urban municipal mortuary, could easily constitute a mass disaster in a small remote community. The landslide, collapse of ski lodges and deaths of 18 people at Thredbo in New South Wales, Australia in 1997 is a good example. One year after the event, the local community was still coming to terms with its loss, and the findings of the inquest and other investigations had still to be handed down.
At Port Arthur, Tasmania, in 1996 a lone gunman embarked upon a brief and savage murder spree, during which 35 people were shot dead and 22 people were wounded. The impact on the entire population of Tasmania was profound: 2 years after the murders, large sections of the community still struggled to cope with their legacy of psychological trauma. In this case, obvious criminality was involved and the perpetrator and his crime had to be investigated simultaneously with the identification of the victims.
In Zeebrugge, Belgium, a decade earlier, a large roll-on, roll-off ferry, the Herald of Free Enterprise, sank and almost 200 people perished. This constituted an ‘open’ disaster. Only a partial passenger manifest existed and so it will never be possible to be absolutely definite as to who was on board the ship at the time it capsized and sank.
In each of the three examples cited, and in almost every disaster, there is an urgent and pressing need to identify the victims on behalf of the next-of-kin. To be told that one’s nearest and dearest has died, the body recovered and formally identified, is a personal tragedy. Ironically, not to know whether one’s husband, mother, wife, son or daughter has been killed can be much worse if there lingers the likelihood that he or she might have been. This is often the case in open disasters, such as the earthquake at Kobe, Japan in 1996, the Tsunami tidal wave in Papua New Guinea in 1998 and most rail crashes, where the names and number of victims are not known with certainty.
In ‘closed’ disasters, such as aircraft crashes, involving a total loss of life for those on board, there usually exists a full crew and passenger list and the task of the investigators is really then to assign the correct identity to the appropriate remains. In open disasters there is the additional complication of trying to establish who was definitely a victim.
In all disasters, however, the families of the deceased need to be confident that the remains of their loved ones have been correctly identified and returned to them as quickly as possible. This allows grieving and funeral rites to take place – the first steps to be taken if people are to cope with their loss. In the case of the Thredbo disaster, some relatives felt strongly that a ‘delay’ of 3 days before bodies were released was unacceptable. Such feelings can often be allayed or assuaged if the next-of-kin are told of all the steps that have to be taken to insure that a formal identification is to be utterly reliable.
Little more than a century ago, Sir William Gladstone, a British Prime Minister, said:show me the manner in which a nation or a community cares for its dead and I will measure with mathematical exactness the tender sympathies of its people, their respect for the laws of the land and their loyalty to high ideals.
While his words seem somewhat quaint and stilted today, the principal message is abundantly clear: respect for the dead is an essential human trait. The manner in which we honor the dead is a reflection of our respect for the society in which we live. Forensic investigators are all too acutely aware of the responsibility placed upon them by the community they serve, but this only reinforces the mutual acknowledgement of the importance of their duties.
There are many legal reasons why it is necessary to identify the dead. In criminal charges of homicide or murder cases, it is an essential prerequisite to identify the victim even in the absence of the remains. In cases of sudden, unexpected or accidental death, the coroner, medical examiner or investigating magistrate has to establish the ‘who’, ‘how’, ‘where’ and ‘when’ of how the person died. It follows that in all mass disasters such legal obligations to investigate rest with the State. In cases where the nationals of one country die in another where customs, culture and legal process differ, this can lead to problems.
The inheritance of property, access to bank accounts, payment of pensions, compensation, and other very mundane but pressingly practical issues, depend for their settlement on the formal identification of the deceased, recorded in the form of a certificate of death.
Civil court action and litigation relating to issues of liability on (for example) the part of an airline contributing to a disaster needs the identity of the deceased to be formally corroborated. This may not only be the identity of the passenger who was someone’s next-of-kin but perhaps the identity of the pilot of the aircraft at the time of the crash.
Issues relating to health and safety concerns in the workplace may require the driver of a long-distance freight truck to be identified. Commercial pressure in the workplace has been known to make employers coerce drivers into driving for too long without proper rest. This has led to fatal accidents. Similarly, pilots have been known to fly while under the influence of alcohol and other drugs. In all such cases, where guidelines, regulations and laws may have been brea- died, exactly who was at the wheel or the controls at the time of the accident has to be determined with the utmost rigor and certainty.


Principles of Identification

The identification of unknown human remains in the wake of mass disaster subscribes to the same principles that pertain for the identification of a single individual.
Identification is a comparative process. Preferably, the comparison is one with some form of dependable, tangible, pre-existing records that can be compared with a feature of the body remaining unchanged in death. Ideally, those features that are to be compared should be highly individualizing or unique to the individual; usually, the more detailed the antemortem record, the more likelihood there is of this being the case.
Sometimes, the amount of antemortem detail recorded far surpasses the original intent of the person making the record. For example, it is normal clinical practice in orthopedic surgery for radiographs (‘X-rays’) to be taken soon after an operation to replace a hip joint with a prosthesis. The surgeon may be interested in the position of the prosthesis, the interface between it and the bone, and other reasons driven by clinical need. However, the radiograph also records the shape, form and type of prosthesis (something already known by the surgeon and of no interest postoperatively). The radiograph also records a ‘surgical signature’. Surgeons may use wire ligatures and fixations of a certain gauge; they may twist wires clockwise or anticlockwise, cut them short or leave them long. In this way surgeons are often able to recognize their own handiwork merely by looking at a postoperative radiograph of one of their patients.
While such a cursory examination may detect many familiar features, a detailed comparison of radiographs taken in the mortuary with one taken of a person in life can reveal such a constellation of ‘points of concordance’ that the identification of the deceased can be corroborated ‘beyond any reasonable doubt’.
The ability to identify persons post mortem with such certainty is utterly dependent on the existence of reliable antemortem data. This may range from family photographs and medical and dental records to fingerprints and ungathered biological evidence.
The absence of any antemortem records usually implies that the investigator cannot gain access to the information, or the records are so scant or poor they are deemed unreliable, or the deceased is completely unknown. This frequently occurs in open disasters.
Where no individual records exist for comparison, the task of the identification expert is to narrow the range of possibilities as to what type of person the deceased had been. From skeletal evidence of teeth, was the deceased adult? Do the remains bear any racial traits or signs of ethnicity? These may range from naturally formed peculiarities of the dentition to self-inflicted tribal scarring or body art. Measurement of proportions of the body may be compared with pre-existing anthropological data to assign a putative ethnicity to remains.
The third very important step in the identification process draws upon the accumulated knowledge and experience of the investigator. There exists in the minds of the public the myth that, somewhere, all scientific knowledge is written down and can therefore be retrieved, if only the search is sufficiently diligent. This is not true. Much of what an expert knows has been acquired and absorbed almost unconsciously. Much of what is committed to text topics can often be out of date because of the very nature of the publishing process. Real experts are cautious and prudent. They are reluctant to commit to writing much of what they have learned, not because they wish to be the ‘keepers of some secret flame’ but rather because, on specific issues, no opportunity has yet arisen for them to test or prove their insights in a legal context.
Where antemortem records are scant or of poor quality, the contribution that truly expert investigators can make to an investigation is incalculable. The process that they bring to the investigation is still a comparative one. It is not just a comparison of obvious, postmortem features with concrete, ante-mortem records: any competent scientist, medical or dental practitioner can do that. Their role may involve the expert gathering of data for comparison with type standards such as anthropological data. However, it really comes into its own and transcends the ordinary when the process is elevated to one of recognizing features that would normally escape detection by most observers, and having the knowledge and experience to appreciate the importance of those features. In this third case, the process is still a comparative one but it is a comparison between hidden features of the body with an incognizant expertise reinforced by a deep understanding of the rarer knowledge dispersed throughout the literature.

Methods of Identification

The most obvious means by which people may recognize one another is visually. Human beings are highly programmed to recognize one another in life. Body language strongly augments the spoken word. This has obvious value for social interaction, as the ability to communicate one’s feelings, moods and emotions is essential for survival. However, even the closest next-of-kin can find it very difficult to recognize members of their own family among a collection of other bodies arising from a mass disaster. This inability is frequently explained by outsiders as an example of ‘denial’ on the part of those struggling to cope with grief and loss. This is too conveniently simplistic. Witnesses to crime also find it hard to identify people from static ‘mug shots’. Research subjects cannot always recognize that a series of different photographs may be all of the same person.
In the absence of pose, expression, gait, clothing and hairstyle, the human face becomes nondescript. Identification by visual means is very quick, cheap and convenient. Unfortunately for authorities under pressure to produce results, it can also be a very seductive option. Visual identification is subject to error by even the most well-intentioned identifier. It can also cause enormous psychological upset if the environment under which the process is attempted is inappropriate, or the feelings of the people involved are not fully considered. In the wake of the Lauda air crash in Thailand, pictures of extremely disfigured remains were put on public display in an attempt to reach those who might recognize the victims. In other societies, this might be seen as distasteful or shocking (Fig. 1 and Fig. 2).
The final objection to visual identification relates to fraud. In the aftermath of the Herald of Free Enterprise shipwreck, people came forward and made fictitious claims relating to nonexistent relatives who were purported to be on board at the time of the loss of the vessel. Some went as far as making fraudulent insurance claims, for which a number were later tried and convicted. This is not an isolated example and, in the absence of strong corroboration by other means, visual identification alone (particularly by family and friends) should not be considered as sufficiently reliable to gain release of any body for burial, or, worse, from an investigator’s point of view, cremation. Should a mistake be discovered later, it will be impossible to re-examine these bodies.
Victim clothing is sometimes used as an adjunct in the identification process. However, as travel increases, and with the increasing trend for mass-produced garments to be made in the less developed world, far from their eventual point of sale, little weight can be given to the clothing worn by victims of disaster. There are exceptions; for instance, in air crashes where some passengers may come from regions such as the Arabian peninsula, where traditional garb is still worn, it may be useful in the initial crude sorting of remains to be able to separate some passengers from others on the basis of dress. Similarly, the uniforms and insignia of the aircrew can be helpful as a first step towards their identification.
Inadequate body storage facilities. Aftermath of Lauda Air crash at Phu Khao Kao Chan near Bangkok, Thailand, in 1991. Bodies were stored outside with little protection from the heat or insects; decomposition was rapid. Body handlers were inadequately dressed, some with open footwear. Such a mortuary can become a secondary health hazard for the investigators.
Figure 1 Inadequate body storage facilities. Aftermath of Lauda Air crash at Phu Khao Kao Chan near Bangkok, Thailand, in 1991. Bodies were stored outside with little protection from the heat or insects; decomposition was rapid. Body handlers were inadequately dressed, some with open footwear. Such a mortuary can become a secondary health hazard for the investigators.
Jewelry is usually chosen carefully; it may be inscribed with the name of the giver and/or the recipient (or their nickname). It may also have been photographed for insurance purposes and, when found attached to a victim, can be excellent evidence for the corroboration of identity. Unfortunately much jewelry is not only precious but valuable as well. It can, and is, frequently pilfered or looted at the scene of a disaster (Fig. 3). A further disadvantage arises because it is attached to the periphery or integument of the body where it can be seen. Such parts are the most vulnerable to damage and destruction by trauma, fire, putrefaction or animal predation. This limits the application of the potential usefulness of jewelry for identification purposes.
Lauda Air crash investigation. Photographs of the deceased put on display near to the mortuary to enlist the input of the general public to aid with identification. Many of the bodies were grossly disfigured. In many societies this would be seen as an inappropriate intrusion of privacy.
Figure 2 Lauda Air crash investigation. Photographs of the deceased put on display near to the mortuary to enlist the input of the general public to aid with identification. Many of the bodies were grossly disfigured. In many societies this would be seen as an inappropriate intrusion of privacy.
Documents such as passports and drivers’ licenses can be very helpful circumstantial evidence of identity, in that documents carrying photographs of the bearer can be useful. However, documents can be stolen or transferred between people. A good example of this occurs when backpackers swap or sell airline tickets, which are then used in another person’s name. This can lead to the situation where the passport of the deceased and the ticket are contradictory. Sometimes the only way to solve the conundrum is to locate the other person to exclude them from the investigation. This may be difficult, if not impossible, when the person concerned may have returned to their country of permanent residence.
Tattoos, scars and body art may be unique to an individual when the design and site of a tattoo or scar are both taken into account. Their vulnerability to destruction and relative rarity in the population at large limit their usefulness in disaster victim identification (Fig. 4).
Fingerprints and footprints have very good evidentiary value in courts of law. Everyone normally has fingerprints, and they are considered for legal purposes to be practically unique. However, in many countries, only criminals have their fingerprints recorded on file ready for comparison. Should anyone from the rest of the population have to be identified, then latent prints taken from the victim’s home or personal possessions have to be found, collected and transmitted. This can be a laborious process. The comparison of fingerprints still requires some subjective interpretation of the latent prints (which may vary in quality) and of the corresponding prints taken from a body that may have lain in water, or undergone desiccation or putrefaction, for some time, thereby changing their dimensions.
Lauda Air crash investigation. A selection of personal effects initially looted from the scene of the disaster and later recovered by the authorities. Even a temporary loss of evidence may seriously hamper investigations into the cause of the crash or the identification of the deceased.
Figure 3 Lauda Air crash investigation. A selection of personal effects initially looted from the scene of the disaster and later recovered by the authorities. Even a temporary loss of evidence may seriously hamper investigations into the cause of the crash or the identification of the deceased.
 Tattoo. When such evidence is present it can be invaluable for suggesting an identity for the deceased, who may have been photographed in life. However, tattooing is still relatively uncommon in the general population, which limits its availability for use in DVI. Furthermore, even when present ante mortem, tattoos may be destroyed post mortem by fire or putrefaction.
Figure 4 Tattoo. When such evidence is present it can be invaluable for suggesting an identity for the deceased, who may have been photographed in life. However, tattooing is still relatively uncommon in the general population, which limits its availability for use in DVI. Furthermore, even when present ante mortem, tattoos may be destroyed post mortem by fire or putrefaction.
Medical records often record transient events. A sore throat healed with the help of antibiotic therapy leaves no permanent scar or evidence that the illness ever occurred. This results in written clinical records but no corresponding postmortem evidence. Conversely, healed fractures, evidence of surgery, such as hysterectomy or appendectomy, or the insertion of pacemakers or metallic prostheses can provide very valuable evidence in corroborating identity: some is unique, some is not. Unfortunately, all such evidence is quite rare, which limits its applicability.
In contrast to medical records, dental records are almost ubiquitous in developed countries. They record treatments that are as permanent as orthopedic surgery but which have an additional advantage in that they can often be detected without dissection, together with features of the normal anatomy that are both individualizing and permanent.
With increasing emphasis on public health and fluoridation of many domestic water supplies, there has been a reduction in the prevalence of dental decay in the populations of developed countries. This does not necessarily reduce the number or quality of dental records. People who are concerned with dental health take steps to prevent damage to their front teeth while playing sports and have mouthguards constructed.
A selection of antemortem dental records in the form of written clinical records, accounts sent to the patient for payment, radiographs, plaster casts of the mouth and tooth crowns and photographs. This represents ample information in order to corroborate identity 'beyond reasonable doubt' and would suffice in a criminal investigation, which may follow from a mass disaster.
Figure 5 A selection of antemortem dental records in the form of written clinical records, accounts sent to the patient for payment, radiographs, plaster casts of the mouth and tooth crowns and photographs. This represents ample information in order to corroborate identity ‘beyond reasonable doubt’ and would suffice in a criminal investigation, which may follow from a mass disaster.
This requires dental impressions to be taken and plaster casts constructed, upon which the mouth-guard is made. The casts record the size, shape and arrangement of the dentition and are an excellent source of dental records.
Others are concerned about the functionality or appearance of their teeth and seek the opinion of an orthodontist. As part of the assessment of the patient, plaster casts of upper and lower dental arches are constructed. The position of the teeth when they bite together is recorded. Radiographs of the head taken from the side record a silhouette of the soft tissues of the face, together with images of the teeth, jaws and skull. These are excellent for identification purposes, despite the victim never having received any dental treatment by means of fillings or restorations (Fig. 5).
The use of biological evidence for identification has come to mean DNA. Older methods establishing blood groups to narrow the possibilities for identification purposes are in decline and have been largely superseded. While the comparison of unique genetic material has obvious merit for corroborating identity, several basic problems arise in mass disasters. The first and most practical relates to fragmentation of bodies. In the Turkish Airlines crash in France in 1974, the 346 passengers and crew were reduced to more than 20 000 fragments. A similar fate befell the 105 people on board SilkAir MI 185 on 19 December 1997 when the plane crashed in Sumatra.
Selecting which pieces to identify is a problem. To attempt to identify all body parts requires access to a high level of expertise and huge laboratory resources. There are very few laboratories that have much inbuilt redundant capacity in terms of space, time or expert staff. In other words, to undertake an enormous study of comparing DNA, either with latent biological evidence or with DNA from blood relatives, requires other normally essential work to be deferred. This may not be possible.
B Identification by dental methods in five mass disasters.

B Identification by dental methods in five mass disasters.

Cork Zeebrugge Piper Alpha Lockerbie East Midlands
Number of victims 329 193 167 270 44
No. of dental records received 279 137 132 252 38
Victims recovered (%) 40 100 81 89 100
ID of recovered bodies by dental records (%) 92 66 76 86 86

Figure 6 (A) Comparative usefulness of methods of identification in DVI. Data compiled from four recent disasters of different typeand the identification criteria are those accepted by the investigating authorities. One of the disasters was a shipwreck, where many of the crew bore tattoos. Similarly ‘visual identification’ may be overrepresented and appear to be more reliable than is really the case. Identification by dental means has been demonstrated to be more than twice as useful as any other method in ‘real-world’investigations. (B) Identification by dental methods in 5 recent disasters.
Cork = Air India A1182 bombed near Cork in Eire 1985
Zeebrugge = Herald of Free Enterprise shipwreck near Zeebrugge 1987
Piper Alpha = Occidental Petroleum oil rig fire and explosion in North Sea, Europe 1988
Lockerbie = PanAm 103 bombed near Lockerbie, Scotland 1988
East Midlands = British Midland BD 092 air crash (engine failure) 1989
Issues of cost are receding as DNA technology becomes more widely used, and so benefits from economies of scale, but the cost is still considerable and may still be prohibitive for those who have to bear that cost.
Another problem relates to the time taken to perform DNA analyses thoroughly. The extraction, purification and amplification of DNA is not always easy and takes time. If the body is putrefied, it may not be possible at all. What may be entirely feasible for one or two corpses can quickly become a practical impossibility in the time-frame available to the disaster victim identification (DVI) investigator.
The final hurdle for the use of DNA for DVI arises from skepticism or reluctance on the part of some courts to accept DNA evidence without question. Many of the barriers to its use have sprung from highly theoretical and somewhat spurious objections that have been spawned by the adversarial process relating to criminal cases. However, courts are now beginning to develop a more predictable and better informed position on the use of DNA for identification.


Selection of the Most Suitable Methods for Identification

From the outset of a disaster, it is important to understand who is in charge of the operation and its component parts. There is often widespread misunderstanding among the agencies concerned about chains of command and tiers of responsibility.
For those striving to identify the dead on behalf of their families and society at large (in that order), it is a wise precaution to assume that every investigation takes place in a potential crime scene. This has implications for the manner in which specimens are collected, documented and investigated, and a coordinated team approach after multidisciplinary conference is the only sensible way to go.
Jurisdictional problems always arise and it is important that all investigators understand what kind of evidence they have to provide in order for it to be admissible and thereby advance the investigation. There is no point in taking depositions of visual identification to the authorities if they require dental, fingerprint or biological evidence to prove identity. Similarly, it is pointless constructing an investigation plan that requires body parts to be exported to sophisticated laboratories overseas if the local investigating power insists on burying all the remains within 24 hours. In short, one has to be pragmatic and use the best methods available under each set of circumstances.
In recent studies it has been shown that about 80% of recovered bodies, eventually identified, will be identified by dental means; the usefulness of this technique far outstrips any other reliable method (Fig. 6).
The selection of any method depends on the state of the bodies: fingerprints are useless when all skin has been burned away; dental methods are of very limited use when no antemortem records exist; and so on. For any method, or combination of methods, selected to suit the condition of the bodies, experts have to be available to conduct the work. In order for experts to function at their best, they have to be in a constant state of readiness. Somewhat contradictorily, this can only be achieved if they are normally engaged in other, closely related duties. For example, most forensic odontologists are dental practitioners who may also teach anatomy or pathology in university departments for most of their working lives.
The size of transportation disasters is on the increase and the loss of any large airliner with passengers and crew is likely to overwhelm the number of experts available, wherever the incident occurs. For this reason, contingency planning must make provision for the rapid importation of the required expertise.
In summary, the selection of the most suitable method, or methods, of identifying victims of disaster is a difficult and subtle task. The decision about which techniques to employ can only be made after an examination of the scene, a knowledge of what is required in a legal sense and an understanding of the resources available. In a world of finite resources, the cost, reliability and facilities required by each method have to be taken into consideration. The number and availability of suitably qualified experts, capable of working cooperatively, is something unknown until the event occurs. The time and resources taken to move bodies to a well-equipped facility need to be understood in the context of pressure from next-of-kin for prompt release of bodies and the need of the grieving to visit the disaster site.
 (A) Example of antemortem screen display for DAVID. The program can hold multiple=(B) Example of a postmortem screen display for DAVID. There is only one postmortem record permitted for each body or body part. Matching can be done in whole or in part. The background color of the form is pink to match the corresponding Interpol form. The default tooth can be set for any case to speed data entry when many teeth are in the same condition.
Figure 7 DAVID computer program to handle dental data for use in DVI. DAVID is an acronym for Disaster And Victim IDentification. The program closely mimics the Interpol forms used in DVI. It has a Visual Basic front end and runs a Microsoft Access database in the background. It is therefore both fast and almost infinitely expandable without loss of performance. The program can use Federation Dentaire International and Universal notation. It handles both antemortem data and postmortem findings and rates their similarity. It can cope with partial remains and multiple antemortem records and can print final reports outside the mortuary in a clean environment. The program is very easy to use, having point and click techniques. DAVID is freely available from the World Wide Web. The site includes a manual to enable customization by the user. (A) Example of antemortem screen display for DAVID. The program can hold multiple antemortem dental records, each of which may be provided by a different practitioner for the same patient. Simple intuitive icons are provided to depict various treatments to the teeth. These can be altered by the user to suit themselves. The dialogue boxes above and below the odontogram are a compressed version of those found on the Interpol form and are scrollable. The background color of the form is yellow to match the corresponding Interpol form. Navigation is simple. All data entry is time and date stamped and only accessible via passwords. Only a single ‘superuser’ may amend or delete records. (B) Example of a postmortem screen display for DAVID. There is only one postmortem record permitted for each body or body part. Matching can be done in whole or in part. The background color of the form is pink to match the corresponding Interpol form. The default tooth can be set for any case to speed data entry when many teeth are in the same condition.

Practical Considerations

Modern mortuaries are carefully designed to maximize the efficiency and performance of the staff who work in them. A temporary mortuary in a tent or aircraft hangar is a very poor substitute. Sometimes the environment where the incident has taken place is so inhospitable that there is no possibility of working there in a meaningful way. The Air New Zealand crash, at Mount Erebus in the snowy wastes of Antarctica, in 1979 and the Gulf Air crash, in the deserts of Abu Dhabi, in 1983 both required the removal of bodies from the scene to pre-existing mortuary complexes.
Where the environment is not so extreme the temptation arises to press into service some municipal building or large secure storage area. At the PanAm 103 crash in 1988, this resulted in bodies having to be carried up and down a curved staircase in the local town hall in Lockerbie. In the Herald of Free Enterprise disaster of 1987, bodies were initially stored in a gymnasium and then moved to a large warehouse inside a NATO base. In the first case, DVI investigators frequently had to withdraw from their tasks while next-of-kin went through the ordeal of looking through rows of bodies, searching for someone they had known. In the second situation, security could be assured but, in common with all temporary mortuaries, it suffered from problems of poor lighting, insufficient electrical supply, poor ventilation, poor drainage of body fluids, excess noise and poor infrastructure for communications. Temporary mortuaries do not allow experts to do their best, and may actually put them at risk of injury or disease. Security of a crash scene or other disaster site is of vital importance. This is to prevent looting, the taking of souvenirs, interference by the media and animal predation; all may remove and destroy vital evidence. Sometimes disasters occur because of deliberate acts of terrorism; and, where bomb explosions are intended to kill and maim, it is common for secondary devices and other booby traps to be set to kill emergency service personnel. Other scenes may be mass graves filled with corpses during civil wars and genocidal acts. Again, for all investigators and their support teams, security at the site can be a cause for concern. Remains should be taken to a single, purpose-built mortuary, unless there are insurmountable reasons why this is not possible.
The inevitable delay in transporting remains will be repaid by the quality of information gleaned from the remains and the increased efficiency of operators. The ability to move bodies to a purpose-built mortuary may require the use of military personnel and resources, and presupposes that such a mortuary exists. Some of the larger, more modern mortuary complexes are able to expand body storage facilities in times of crises. This may include the facility to park refrigerated container trucks in a secure environment and to connect the refrigeration units to a mains supply. This frees the workplace of the noise and fumes from truck motors.
In the aftermath of the Abu Dhabi air crash at Mino Jebel Ali in 1983, bodies and body parts had to be taken to different mortuaries throughout the country. This meant the matching of badly fragmented bodies was made extremely difficult and put extra strain on communications.
Communications are always inadequate at the beginning of a disaster investigation. The telephone exchange at Lockerbie burned out through overload within hours of the crash of PanAm 103 in 1988. In the past, many emergency services have operated on frequencies peculiar to their own organization and have had to rely worldwide upon volunteer nongovernmental organizations like WICEN (Wireless Institute Civil Emergency Network) to facilitate the exchange of mutually important operational information. Knowing how many bodies are at the scene, whether they are grouped or dispersed, ease of recovery, state of the remains and estimated time in transit to the mortuary -all assist in the preparations for the DVI investigator. For this reason it is important that someone with expertise in this area should be included in the small assessment team sent to the site of the disaster. Human resource estimations can be made and new team members recruited or stood down to match the circumstances.
In the rush to help, a normal-enough human reaction, several problems can arise. Firstly, people who are willing but not really able to cope can get involved to the point where they become casualties themselves. This impedes everyone else. Secondly, highly skilled people get involved in tasks outside their own area of expertise and dissipate their energy, so that when they really could be expected to work, they perform with reduced efficiency. Thirdly, experts push themselves too hard and for too long and start to make mistakes. Later they can feel guilty or angry with others who have to double-check their results. This can jeopardize the effectiveness of the team and hence the investigations.
For all of the above reasons it is imperative that the team leader has first-hand experience of DVI. In an operational sense, the team leader may not get too involved with mortuary teams, or the groups tracing, gathering and collating antemortem data, for whom he or she is responsible. It is important for all team members to know what is going on and what is expected of them. Such information cannot be given out on an individual basis and is better relayed at regular twice-daily briefings. All teams should informally debrief each other by sharing a good meal and refreshments at the end of each day. Investigators need to have privacy. They should not be housed in the same hotels as the press or the families of the deceased. Everyone needs to be alert to signs, in themselves and others, indicating poor coping strategies, and all team members should feel free to be able to walk away without explanation at any time.
Inter-agency rivalries are commonplace and can be extremely destructive. Negative criticism of other groups should be suppressed, and any suggestions relating to the performance or behavior of others should be channeled through team leaders.
Data generated by the investigation should be carried only along preagreed lines of reporting. No one, except the officially appointed spokesperson, should ever talk to the public, the press or the families.
All data should be entered onto paperwork specifically designed for the purpose. Interpol standards and documentation are widely adopted but others are used in certain jurisdictions. Computer programs have been designed to handle the vast amount of data generated in disaster investigation (Fig. 7). They vary in their usefulness and they should not be used unless the investigators have already used them, either in training or some other context, like a ‘missing persons’ database. It is courting disaster to try to train people in the finer points of a new computer program on what will be the worst day of their year. Similarly, it is essential that those people who have to fill in standard forms know exactly how to do it and that all team members use the same abbreviations, symbols and shorthand.
Finally, when the antemortem record hunters/interpreters have gathered data, it is fed to teams charged with making comparisons with data gleaned post mortem. It is important for heads of specialist identification teams to pass information to each other on a regular basis. Interpol procedures include a large matrix in which all the findings of specialist groups can be seen together. This gives confidence in the final opinion passed to the coroner, medical examiner or investigating magistrate with whom the final decision about identity rests.

Conclusions

It is difficult to get most people to consider the unthinkable, yet unimaginable disasters will always occur. This inevitability of disaster should not give rise to a fatalistic attitude, for that removes the need to plan and prepare. Counterdisaster plans should be simple and up to date and understood by all with a need to know. A disaster plan should not be something ‘done a few years ago’, gathering dust on the shelf. There is the need for constantly revisiting plans to see how good they have been when implemented. This process of review, rehearsal and training should be continuous, so that the oral tradition is every bit as strong as the written word in the manual. In the words of the famous maxim in QANTAS Airline’s Department of Safety and Environment:
If you think safety is expensive, try having an accident.
Such costs are not merely financial. It behoves us all to mitigate accidents and loss of life by the use of good design, workplace practices and counterdisaster planning. However, in the end, we owe it to the families of those who perish to place the proper identification of the deceased at the top of our list of priorities when the unthinkable does, inevitably, occur.

Next post:

Previous post: