Erosion is a broadly defined group of processes involving the movement of soil and rock. This movement is often the result of flowing agents, whether wind, water, or ice, which sometimes behaves like a fluid in the large mass of a glacier. Gravitational pull may also influence erosion. Thus, erosion, as a concept in the earth sciences, overlaps with mass wasting or mass movement, the transfer of earth material down slopes as a result of gravitational force. Even more closely related to erosion is weathering, the breakdown of rocks and minerals at or near the surface of Earth owing to physical, chemical, or biological processes. Some definitions of erosion even include weathering as an erosive process. Though most widely known as a by-product of irresponsible land use by humans and for its negative effect on landforms, erosion is neither unnatural nor without benefit. Far more erosion occurs naturally than as a result of land development, and a combination of weathering and erosion is responsible for producing the soil from which Earth’s plants grow.



The first step in the process of erosion is weathering. Weathering, in a general sense, occurs everywhere: paint peels; metal oxidizes, resulting in its tarnishing or rusting; and any number of products, from shoes to houses, begin to show the effects of physical wear and tear. The scuffing of a shoe, cracks in a sidewalk, or the chipping of glass in a gravel-spattered windshield are all examples of physical weathering. On the other hand, the peeling of paint is usually the result of chemical changes, which have reduced the adhesive quality of the paint. Certainly oxidation is a chemical change, meaning that it has not simply altered the external properties of the item but also has brought about a change in the way that the atoms are bonded.
Weathering, as the term is used in the geologic sciences, refers to these and other types of physical and chemical changes in rocks and minerals at or near the surface of Earth. A mineral is a substance that occurs naturally and is usually inorganic, meaning that it contains carbon in a form other than that of an oxide or a carbonate, neither of which is considered organic. It typically has a crystalline structure, or one in which the constituent parts have a simple and definite geometric arrangement repeated in all directions. Rocks are simply aggregates or combinations of minerals or organic material or both.

Two and one-half kinds of weathering

There are three kinds of weathering (or perhaps two and one-half, since the third incorporates aspects of the first two): physical or mechanical, chemical, and biological. Physical or mechanical weathering takes place as a result of such factors as gravity, friction, temperature, and moisture. Gravity may cause a rock to drop from a height, such that it falls to the ground and breaks into pieces, while the friction of wind-borne sand may wear down a rock surface. Changes in temperature and moisture cause expansion and contraction of materials, as when water seeps into a crack in a rock and then freezes, expanding and splitting the rock.
Nicola River Canyon in British Columbia shows the effects of freeze-thaw and erosion by wind and rain .
Nicola River Canyon in British Columbia shows the effects of freeze-thaw and erosion by wind and rain .
Minerals are chemical compounds; thus, whereas physical weathering attacks the rock as a whole, chemical weathering effects the breakdown of the minerals that make up the rock. This breakdown may lead to the dissolution of the minerals, which then are washed away by water or wind or both, or it may be merely a matter of breaking the minerals down into simpler compounds. Reactions that play a part in this breakdown may include oxidation, mentioned earlier, as well as carbonation, hydrolysis (a reaction with water that results in the separation of a compound to form a new substance or substances), and acid reactions. For instance, if coal has been burned in an area, sulfur impurities in the air react with water vapor (an example of hydrolysis) to produce acid rain, which can eat away at rocks. Rainwater itself is a weak acid, and over the years it slowly dissolves the marble of headstones in old cemeteries.
As noted earlier, there are either three or two and one-half kinds of weathering, depending on whether one considers biological weathering a third variety or merely a subset of physical and chemical weathering. The weathering exerted by organisms (usually plants rather than animals) on rocks and minerals is indeed chemical and physical, but because of the special circumstances, it is useful to consider it individually There is likely to be a long-term interaction between the organism and the geologic item, an obvious example being a piece of moss that grows on a rock. Over time, the moss will influence both physical and chemical weathering through its attendant moisture as well as its specific chemical properties, which induce decomposition of the rock’s minerals.

Unconsolidated Material

The product of weathering in rocks or minerals is unconsolidated, meaning that it is in pieces, like gravel, though much less uniform in size. This is called regolith, a general term that describes a layer of weathered material that rests atop bedrock. Sand and soil, including soil mixed with loose rocks, are examples of regolith. Regolith is, in turn, a type of sediment, material deposited at or near Earth’s surface from a number of sources, most notably preexisting rock.
Every variety of unconsolidated material has its own angle of repose, or the maximum angle at which it can remain standing. Piles of rocks may have an angle of repose as high as 45°, whereas dry sand has an angle of only 34°. The addition of water can increase the angle of repose, as anyone who has ever strengthened a sand castle by adding water to it knows. Suppose one builds a sand castle in the morning, sloping the sand at angles that would be impossible if it were dry. By afternoon, as wind and sunlight dry out the sand, the sand castle begins to fall apart, because its angle of repose is too high for the dry sand.
Water gives sand surface tension, the same property that causes water that has been spilled on a table to bead up rather than lie flat. If too much water is added to the sand, however, the sand becomes saturated and will flow, a process called lateral spreading. On the other hand, with too little moisture, the material is susceptible to erosion. Unconsolidated material in nature generally has a slope less than its angle of repose, owing to the influence of wind and other erosive forces.

Introduction to Mass Wasting

There are three general processes whereby a piece of earth material can be moved from a high outcropping to the sea: weathering, mass wasting, and erosion. In the present context, we are concerned primarily with the last of these processes, of course, and secondarily with weathering, inasmuch as it contributes to erosion. A few words should be said about mass wasting, however, which, in its slower forms (most notably, creep), is related closely to erosion.
Mechanical or chemical processes, or a combination of the two, acting on a rock to dislodge it from a larger sample (e.g., separating a rock from a boulder) is an example of weathering, as we have seen. If the pieces of rock are swept away by a river in a valley below the outcropping, or if small pieces of rock are worn away by high winds, the process is erosion. Between the outcropping and the river below, if a rock has been broken apart by weathering, it may be moved farther along by mass-wasting processes, such as creep or fall.


Mass Wasting in Action

One of the principal sources of erosion is gravity, which is also the force behind creep, the slow downward movement of regolith along a hill slope. The regolith begins in a condition of unstable equilibrium, like a soda can lying on its side rather than perpendicular to a table’s surface: in both cases, the object remains in place, yet a relatively small disturbance would be enough to dislodge it.
Changes in temperature or moisture are among the leading factors that result in creep. A variation in either can cause material to expand or contract, and freezing or thawing may be enough to shake regolith from its position of unstable equilibrium. Water also can provide lubrication, or additional weight, that assists the material in moving. Though it is slow, over time creep can produce some of the most dramatic results of any mass-wasting process. It can curve tree trunks at the base, break or dislodge retaining walls, and overturn objects ranging from fence posts to utility poles to tombstones.

Other varieties of flow

Creep is related to another slow mass-wasting process, known as solifluction, that occurs in the active layer of permafrost—that is, the layer that thaws in the summertime. The principal difference between creep and solifluction is not the speed at which they take place (neither moves any faster than about 0.5 in. [1 cm] per year) but the materials involved. Both are examples of flow, a chaotic form of mass wasting in which masses of material that are not uniform move downs-lope. With the exception of creep and solifluction, most forms of flow are comparatively rapid, and some are extremely so.
Because it involves mostly dry material, creep is an example of granular flow, which is composed of 0% to 20% water; on the other hand, solifluction, because of the ice component, is an instance of slurry flow, consisting of 20% to 40% water. If the water content is more than 40%, a slurry flow is considered a stream. Types of granular flow that move faster than creep range from earth flow to debris avalanche. Both earth flow and debris flow, its equivalent in slurry form, move at a broad range of speeds, anywhere from about 4 in. (10 cm) per year to 0.6 mi. (1 km) per hour. Grain flow can be as fast as 60 mi. (100 km) per hour, and mud flow is even faster. Fastest of all is debris avalanche, which may achieve speeds of 250 mi. (400 km) per hour.

Other types of mass wasting

Other varieties of mass wasting include slump, slide, and fall. Slump occurs when a mass of regolith slides over or creates a concave surface (one shaped like the inside of a bowl.) The result is the formation of a small, crescent-shaped cliff, known as a scarp, at the upper end—rather like the crest of a wave. Slump often is classified as a variety of slide, in which material moves downhill in a fairly coherent mass (i.e., more or less in a section or group) along a flat or planar surface. These movements are sometimes called rock slides, debris slides, or, in common parlance, landslides.
Rock arches formed by erosion.
Rock arches formed by erosion.
In contrast to most other forms of mass wasting, in which there is movement along slopes that are considerably less than 90°, fall occurs at angles almost perpendicular to the ground. The “Watch for Falling Rock” signs on mountain roads may be frightening, and rock or debris fall is certainly one of the more dramatic forms of mass wasting. Yet the variety of mass wasting that has the most widespread effects on the morphology or shape of landforms is the slowest one— creep. (For more about the varieties of mass wasting, see Mass Wasting.)

What Causes Erosion?

As noted earlier, the influences behind erosion are typically either gravity or flowing media: water, wind, and even ice in glaciers. Liquid water is the substance perhaps most readily associated with erosion. Given enough time, water can wear away just about anything, as proved by the carving of the Grand Canyon by the Colorado River.
Dubbed the universal solvent for its ability to dissolve other materials, water almost never appears in its pure form, because it is so likely to contain other substances. Even “pure” mountain water contains minerals and pieces of the rocks over which it has flowed, a testament to the power of water in etching out landforms bit by bit. Nor does it take a rushing mountain stream or crashing waves to bring about erosion; even a steady drip of water is enough to wear away granite over time.

Moving water

Along coasts, pounding waves continually alter the shoreline. The sheer force of those walls of water, a result of the Moon’s gravitational pull (and, to a lesser extent, the Sun’s), is enough to wear away cliffs, let alone beaches. In addition, waves carry pieces of pebble, stone, and sand that cause weathering in rocks. Waves even can bring about small explosions in pockmarked rock surfaces by trapping air in small cracks; eventually the pressure becomes great enough that the air escapes, loosening pieces of the rock.
In addition to the erosive power of saltwater waves on the shore, there is the force exerted by running water in creeks, streams, and rivers. As the river moves, pushing along sediment and other materials eroded from the streambed or riverbed, it carves out deep chasms in the bedrock beneath. These moving bodies of water continually reshape the land, carrying soil and debris downslope, or from the source of the river to its mouth or delta. A delta is a region of sediment formed when a river enters a larger body of water, at which point the reduction in velocity on the part of the river current leads to the widespread deposition (depositing) of sediment. It is so named because its triangular shape resembles that of the Greek letter delta, A.
Water at the bottom of a large body, such as a pond or lake, also exerts erosive power. Then there is the influence of falling rain. Assuming ground is not protected by vegetation, raindrops can loosen particles of soil, sending them scattering in all directions. A rain that is heavy enough may dislodge whole layers of topsoil and send them rushing away in a swiftly moving current. The land left behind may be rutted and scarred, much of its best soil lost for good.
Just as erosion gives to the soil, it also can take away. Whereas erosion on the Nile delta acted to move rich, black soil into the region (hence, the ancient Egyptians’ nickname for their country, the “black land”), erosion also can remove soil layers. As is often the case, it is much easier to destroy than to create: 1 in. (2.5 cm) of soil may take as long as 500 years to form, yet a single powerful rainstorm or windstorm can sweep it away.


Ice, of course, is simply another form of water, but since it is solid, its physical ( not its chemical) properties are quite different. Generally, physical sciences, such as physics or chemistry, treat as fluid all forms of matter that flow, whether they are liquid or gas. Normally, no solids are grouped under the heading of”fluid,” but in the earth sciences there is at least one type of solid object that behaves as though it were fluid: a glacier.
A glacier is a large, typically moving mass of ice either on or adjacent to a land surface. It does not flow in the same way that water does; rather, it is moved by gravity, as a consequence of its extraordinary weight. Under certain conditions, a glacier may have a layer of melted water surrounding it, which greatly enhances it mobility. Regardless of whether it has this lubricant, however, a glacier steadily moves forward, carrying pieces of rock, soil, and vegetation with it.
These great rivers of ice gouge out pieces of bedrock from mountain slopes, fashioning deep valleys. Ice along the bottom of the glacier pulls away rocks and soil, which assist it in wearing
A "dust devil," or a small whirlwind, carries with it debris and sand.
A “dust devil,” or a small whirlwind, carries with it debris and sand.
away bedrock. The fjords of Norway, where high cliffs surround narrow inlets whose depths extend many thousands of feet below sea level, are a testament to the power of glaciers in shaping the Earth. The fact that the fjords came into existence only in the past two million years, a product of glacial activity associated with the last ice age, is evidence of something else remarkable about glaciers: their speed.
“Speed,” of course, is a relative term when speaking about processes involved in the shaping of the planet. A “fast” glacier, one whose movement is assisted by a wet and warm (again, relatively warm!) maritime climate, moves at the rate of about 980 ft. (300 m) per year. Examples include not only the glaciers that shaped the fjords, but also the active Franz Josef glacier in southern New Zealand. By contrast, in the dry, exceptionally cold, inland climate of Antarctica, the Meserve glacier moves at the rate of just 9.8 ft. (3 m) per year.


The erosion produced by wind often is referred to as an eolian process, the name being a reference to Aeolus, the Greek god of the winds encountered in Homer’s Odyssey and elsewhere. Eolian processes include the erosion, transport, and deposition of earth material owing to the action of wind. It is most pronounced in areas that lack effective ground cover in the form of solidly rooted, prevalent vegetation.
Eolian erosion in some ways is less forceful than the erosive influence of water. Water, after all, can lift heavier and larger particles than can the winds. Wind, however, has a much greater frictional component in certain situations. This is particularly true when the wind carries sand, every grain of which is like a cutting tool. In some desert regions the bases of rocks or cliffs have been sandblasted, leaving a mushroom-shaped formation. The wind could not lift the fine grains of sand very high, but in places where it has been able to do its work, it has left an indelible mark.

The Dust Bowl and Human Contribution to Erosion

Though human actions are not a direct cause of erosion, human negligence or mismanagement often has prepared the way for erosive action by wind, water, or other agents. Interesting, soil itself, formed primarily by chemical weathering and enhanced by biological activity in the sediment, is a product of nature’s erosive powers. Erosion transports materials from one place to another, robbing the soil in one place and greatly enhancing it in another.
This is particularly the case where river deltas are concerned. By transporting sediment and depositing it in the delta, the river creates an area of extremely fertile soil that, in some cases, has become literally the basis for civilizations. The earliest civilizations of the Western world, in Egypt and Sumer, arose in the deltas of the Nile and the Tigris-Euphrates river systems, respectively.

Erosion on the great plains

An extreme example of the negative effects on the soil that can come from erosion (and, ultimately, from human mismanagement) took place in Texas, Oklahoma, Colorado, and Kansas during the 1930s. In the preceding years, farmers unwittingly had prepared the way for vast erosion by overcultivating the land and not taking proper steps to preserve its moisture against drought. In some places farmers alternated between wheat cultivation and livestock grazing on particular plots of land.
The soil, already weakened by raising wheat, was damaged further by the hooves of livestock, and thus when a period of high winds began at the height of the Great Depression (1929-41), the land was particularly vulnerable. The winds carried dust to places as far away as the eastern seaboard, in some cases removing topsoil to a depth of 3-4 in. (7-10 cm). Dunes of dust as tall as 15-20 ft. (4.6-6.1 m) formed, and the economic blight of the Depression was compounded for the farmers of the plains states, many of whom lost everything.
Out of the Dust Bowl era came some of the greatest American works of art: the 1939 film Wizard of Oz, John Steinbeck’s topic The Grapes of Wrath and the acclaimed motion picture (1939 and 1940, respectively), as well as Dorothea Lange’s haunting photographs of Dust Bowl victims. The Dust Bowl years also taught farmers and agricultural officials a lesson about land use, and in later years farming practices changed. Instead of alternating one year of wheat growing with one year in which a field lay fallow, or unused, farmers discovered that a wheat-sorghum-fallow cycle worked better. They also enacted other measures, such as the planting of trees to serve as windbreaks around croplands.

The Striking Landscape of Erosion

Among the by-products of erosion are some of the most dramatic landscapes in the world, many of which are to be found in the United States. A particularly striking example appears in Colorado, where the Arkansas River carved out the Royal Gorge. Though it is not nearly as deep as the Grand Canyon, this one has something the more famous gorge does not: a bridge. Motorists with the stomach for it can cross a span 1,053 ft. (0.32 km) above the river, one of the most harrowing drives in America.
Another, perhaps equally taxing, drive is that down California 1, a gorgeous scenic highway whose most dramatic stretches lie between Carmel and San Simeon. Drivers headed south find themselves pressed up against the edge of the cliffs, such that the slightest deviation from the narrow road would send an automobile and its passengers plummeting to the rocks many hundreds of feet below. These magnificent, terrifying landforms are yet another product of erosion, in this case, the result of the pounding Pacific waves.
Also striking is the topography produced by the erosion of material left over from a volcanic eruption. As discussed in the Mountains essay, Devils Tower National Monument in Wyoming is the remains of an extinct volcano whose outer surface long ago eroded, leaving just the hard lava of the volcanic “neck.” Erosion of lava also can produce mesas. Lava that has settled in a river valley may be harder than the rocks of the valley walls, such that the river eventually erodes the rocks, leaving only the lava platform. What was once the floor of the valley thus becomes the top of a mesa.


Creep: A form of mass wasting involving the slow downward movement of regolith as a result of gravitational force.
Delta: A region of sediment formed when a river enters a larger body of water, at which point the reduction in velocity on the part of the river current leads to the widespread deposition of sediment.
Deposition: The process whereby sediment is laid down on the Earth’s surface.
Erosion: The movement of soil and rock due to forces produced by water, wind, glaciers, gravity, and other influences. In most cases, a fluid medium, such as air or water, is involved.
Flow: A form of mass wasting in which a body of material that is not uniform moves rapidly downslope.
Geomorphology: An area of physical geology concerned with the study of landforms, with the forces and processes that have shaped them, and with the description and classification of various physical features on Earth.
Glacier: A large, typically moving mass of ice either on or adjacent to a land surface.
Landform: A notable topographical feature, such as a mountain, plateau, or valley.
Mass wasting: The transfer of earth material, by processes that include creep, slump, slide, flow, and fall, down slopes. Also known as mass movement.
Morphology: Structure or form or the study thereof.
Regolith: A general term describing a layer of weathered material that rests atop bedrock.
Sediment: Material deposited at or near Earth’s surface from a number of sources, most notably preexisting rock.
Slide: A variety of mass wasting in which material moves downhill in a fairly coherent mass (i.e., more or less in a section or group) along a flat or planar surface.
Slump: A form of mass wasting that occurs when a mass of regolith slides over or creates a concave surface (one shaped like the inside of a bowl). topography: The configuration of Earth’s surface, including its relief as well as the position of physical features.
Weathering: The breakdown of rocks and minerals at or near the surface of Earth due to physical, chemical, or biological processes.

Controlling Erosion

The force that shapes valleys and coastlines is certainly enough to destroy hill slopes, often with disastrous consequences for nearby residents. Such has been the case in California, where, during the 1990s, areas were dealt a powerful one-two punch of drought followed by rain. The drought killed off much of the vegetation that might have held the hillsides, and when rains came, they brought about mass wasting in the form of mudflows and landslides.
Over the surface of the planet, the average rate of erosion is about 1 in. (2.2 cm) in a thousand years. This is the average, however, meaning that in some places the rate is much, much higher, and in others it is greatly lower. The rate of erosion depends on several factors, including climate, the nature of the materials, the slope and angle of repose, and the role of plant and animal life in the local environment.
Whereas many types of plants help prevent erosion, the wrong types of planting can be detrimental. The dangers of improper land usage for crops and livestock are illustrated by the Dust Bowl experience, which highlights the fact that the organism most responsible for erosion is humanity itself. On the other hand, people also can protect against erosion by planting vegetation that holds the soil, by carefully managing and controlling land usage, and by lessening slope angle in places where gravity tends to erode the soil.

Next post:

Previous post: