Distillation and Filtration

CONCEPT

When most people think of chemistry, they think about joining substances together. Certainly, the bonding of elements to form compounds through chemical reactions is an integral component of the chemist’s study; but chemists are also concerned with the separation of substances. Some forms of separation, in which compounds are returned to their elemental form, or in which atoms split off from molecules to yield a compound and a separated element, are complex phenomena that require chemical reactions. But chemists also use simpler physical methods, distillation and filtration, to separate mixtures. Distillation can be used to purify water, make alcohols, or separate petroleum into various components that range from natural gas to gasoline to tar. Filtration also makes possible the separation of gases or liquids from solids, and sewage treatment—a form of filtration—separates liquids, solids, and gases through a series of chemical and physical processes.

HOW IT WORKS

Mixtures: Homogeneous and Heterogeneous

In contrast to a pure substance, a class that includes only elements and compounds, mixtures constitute a much broader category. Usually, a mixture consists of many compounds mixed together, but it is possible to have a mixture (air is an example) in which elemental substances are combined with compounds. Elements alone can be combined in a mixture, as when copper and zinc are alloyed to make brass. It is also possible to have a mixture of mixtures, as for example when milk (a particular type of mixture called an emulsion) is added to coffee.
It is sometimes difficult, without studying the chemical aspects involved, to recognize the difference between a mixture and a pure substance. A mixture, however, can be defined as a substance with a variable composition, meaning that if more of one component is added, it does not change the essential character of the mixture. People unconsciously recognize this when they joke, “Would you like a little coffee with your milk?”
This comment, made when someone puts a great quantity of milk into a cup of coffee, implies that we generally regard coffee and milk as a solution in which the coffee dissolves the milk. But even if someone made a cup of coffee that was half milk, so that the resulting substance had a vanilla-like color, we would still call it coffee. If the components of a pure substance are altered, however, it becomes something entirely different.
Two hydrogen atoms bonded to an oxygen atom create water, but when two hydrogen atoms bond to two oxygen atoms, this is hydrogen peroxide, an altogether different substance. Water at ordinary temperatures does not bubble, whereas hydrogen peroxide does. Hydrogen peroxide boils at a temperature more than 1.5 times the boiling point of water, and potatoes boiled in hydrogen peroxide would be nothing like potatoes boiled in water. Eating them, in fact, could very well be fatal.


Homogeneous vs. Heterogeneous

Unlike a compound or element, a mixture can never be broken down to a single type of molecule or atom, yet there are mixtures that appear to be the same throughout. These are called homogeneous mixtures, in which the properties and characteristics are the same throughout the mixture. In a heterogeneous mixture, on the other hand, the composition is not the same throughout, and in fact the mixture is separated into regions with varying properties.
Chemists of the past sometimes had difficulty distinguishing between homogeneous mixtures—virtually all of which can be described as solutions—and pure substances. Air, for example, appears to be a pure substance; yet there is no such thing as an “air molecule.” Instead, air is composed primarily of nitrogen and oxygen, which appear in molecular rather than atomic form, along with separated atoms of noble gases and two important compounds: carbon dioxide and water. (Water exists in air as a vapor.)
There is less probability of confusing a heterogeneous mixture with a pure substance, because one of the defining aspects of a heterogeneous substance is the fact that it is clearly a mixture. When sand is added to a container of water, and the sand sinks to the bottom, it is obvious that there is no “sand-and-water” molecule pervading the entire mixture. Clearly, the upper portion of the container is mostly water, and the lower portion mostly sand.

Separating Mixtures

There are two basic processes for separating mixtures, distillation and filtration. In general, these are applied for the separation of homogeneous and heterogeneous mixtures, respectively. Distillation is the use of heat to separate the components of a liquid and/or gas, while filtration is the separation of solids from a fluid (either a gas or a liquid) by allowing the fluid to pass through a filter.
In a solution such as salt water, there are two components: the solvent (the water) and the solute (the salt). These can be separated by distillation in a laboratory using a burner placed under a beaker containing the salt water. As the water is heated, it passes out of the beaker in the form of steam, and travels through a tube cooled by a continual flow of cold water. Inside the tube, the steam condenses to form liquid water, which passes into a second beaker. Eventually, all of the solvent will be distilled from the first beaker, leaving behind the salt that constituted the solute of the original solution.
Distillation may seem like a chemical process, but in fact it is purely physical, because the composition of neither compound—salt or water—has been changed. As for filtration, it is clearly a physical process, just as heterogeneous mixtures are more obviously mixtures and not compounds. Suppose we wanted to separate the heterogeneous mixture we described earlier, of sand in water: all we would need would be a mesh screen through which the liquid could be strained, leaving behind the sand.
Despite the apparent simplicity of filtration, it can become rather complicated, as we shall see, in the treatment of sewage to turn it into water that poses no threat to the environment. Furthermore, it should be noted that sometimes these processes—distillation and filtration—are used in tandem. Suppose we had a mixture of sand and salt water taken from the beach, and we wanted to separate the mixture. The first step would involve the simpler process of filtration, separating the sand from the salt water. This would be followed by the separation of pure water and salt through the distillation process.

REAL-LIFE APPLICATIONS

Distillation

In distillation, the more volatile component of the mixture—that is, the part that is more easily vaporized—is separated from the less volatile portion. With regard to the illustration used above, of separating water from salt, clearly the water is the more volatile portion: its boiling point is much, much lower than that of salt, and the heat required to vaporize the salt is so great that the water would be long since vaporized by the time the salt was affected.
Once the volatile portion has been vaporized, or turned into distillate, it experiences condensation—the cooling of a gas to form a liquid, after which the liquid or condensate is collected. Note that in all these stages of distillation, heat is the agent of separation. This is especially important in the process of fractional distillation, discussed below.
The process of removing water vapor from salt water, described earlier, is an example of what is called “single-stage differential distillation.” Sometimes, however—especially when a
A water filtration plant in Contra Costa County, California.
A water filtration plant in Contra Costa County, California.
high level of purity in the resulting condensate is desired—it may be necessary to subject the condensate to multiple processes of distillation to remove additional impurities. This process is called rectification.
purified water and ethanol. If distillation can be used to separate water from salt, obviously it can also be used to separate water from microbes and other impurities through a more detailed process of rectification. Distilled water, purchased for drinking and other purposes, is just one of the more common applications of the distillation process. Another well-known use of this process is the production of ethyl alcohol, made famous (or perhaps infamous) by stories of bootleggers producing

Homemade whiskey from “stills” or distilleries in the woods

Ethanol, the alcohol in alcoholic beverages, is produced by the fermentation of glucose, a sugar found in various natural substances. The choice of substances is a function of the desired product: grapes for wine; barley and hops for beer; juniper berries for gin; potatoes for vodka, and so on. Glucose reacts with yeast, fermenting to yield ethanol, and this reaction is catalyzed by enzymes in the yeast. The reaction continues until the alcohol content reaches a point equal to about 13%.
After that point, the yeast enzymes can no longer survive, and this is where the production of beer or wine usually ends. Fortified wine or
Few industries employ distillation to a greater degree than does the petroleum industry. Shown here is an oil refinery.
Few industries employ distillation to a greater degree than does the petroleum industry. Shown here is an oil refinery.
malt liquor—variations of wine and beer, respectively, that are more than 13% alcohol, or 26 proof—are exceptions. These two products are the result of mixtures between undistilled beer and wine and products of distillation having a higher alcohol content.
Distillation constitutes the second stage in the production of alcohol. Often, the fermentation products are subjected to a multistage rectification process, which yields a mixture of up to 95% ethanol and 5% water. This mixture is called an azeotrope, meaning that it will not change composition when distilled further. Usually the production of whiskey or other liquor stops well below the point of yielding an azeotrope, but in some states, brands of grain alcohol at 190 proof (95%) are sold.

Industrial distillation

In contrast to ethanol, methanol or “wood alcohol” is a highly toxic substance whose ingestion can lead to blindness or death. It is widely used in industry for applications in adhesives, plastics, and other products, and was once produced by the distillation of wood. In this old production method, wood was heated in the absence of air, such that it did not burn, but rather decomposed into a number of chemicals, a fraction of which were methanol and other alcohols.
The distillation of wood alcohol was abandoned for a number of reasons, not least of which was the environmental concern: thousands of trees had to be cut down for use in an inefficient process yielding only small portions of the desired product. Today, methanol is produced from synthesis gas, itself a product of coal gasification; nonetheless, numerous industrial processes use distillation.
Distillation is employed, for instance, to separate the hydrocarbons benzene and toluene, as well as acetone from acetic acid. In nuclear power plants that require quantities of the hydrogen isotope deuterium, the lighter protium isotope, or plain hydrogen, is separated from the heavier deuterium by means of distillation. Few industries, however, employ distillation to a greater degree than the petroleum industry.
Through a process known as fractional distillation, oil companies separate hydrocarbons from petroleum, allowing those of lower molecular mass to boil off and be collected first. For instance, at temperatures below 96.8°F (36°C), natural gas separates from petroleum. Other substances, including petroleum ether and naphtha, separate before the petroleum reaches the 156.2°F-165.2°F (69°C-74°C) range, at which point gasoline separates.
Fractional distillation continues, with the separation of other substances, all the way up to 959°F (515°C), above which tar becomes the last item to be separated. Petroleum and petroleum-product companies account for a large portion of the more than 40,000 distillation units in operation across the country. About 95% of all industrial separation processes involve distillation, which consumes large amounts of energy; for that reason, ever more efficient forms of distillation are continually being researched.

Filtration

In the simplest form of filtration, described earlier, a suspension (solid particles floating in a liquid) is allowed to pass through filter paper supported in a glass funnel. The filter paper traps the solid particles, allowing a clear solution (the filtrate) to pass through the funnel and into a receiving container.
There are two basic purposes for filtration: either to capture the solid material suspended in the fluid, or to clarify the fluid in which the solid is suspended. An example of the former occurs, for instance, when panning for gold: the water is allowed to pass through a sieve, leaving behind rocks that—the prospector hopes—contain gold.
An example of the latter occurs in sewage treatment. Here the solid left behind is feces—as undesirable as gold is desirable.
Filtration can further be classified as either gaseous or liquid, depending on which of the fluids constitutes the filtrate. Furthermore, the force that moves the fluid through the filter—whether gravity, a vacuum, or pressure—is another defining factor. The type of filter used can also serve to distinguish varieties of filtration.

Liquid filtration

In liquid filtration, such as that applied in sewage treatment, a liquid can be pulled through the filter by gravitational force, as in the examples given. On the other hand, some sort of applied pressure, or a pressure differential created by the existence of a vacuum, can force the liquid through the filter.
Water filtration for purification purposes is often performed by means of gravitation. Usually, water is allowed to run down through a thick layer of granular material such as sand, gravel, or charcoal, which removes impurities. These layers may be several feet thick, in which case the filter is known as a deep-bed filter. Water purification plants may include fine particles of charcoal, known as activated carbon, in the deep-bed filter to absorb unpleasant-smelling gases.
For separating smaller volumes of solution, a positive-pressure system—one that uses external pressure to push the liquid through the filter—may be used. Fluid may be introduced under pressure at one end of a horizontal tank, then forced through a series of vertical plates covered with thick filtering cloths that collect solids. In a vacuum filter, a vacuum (an area virtually devoid of matter, including air) is created beneath the solution to be filtered, and as a result, atmospheric pressure pushes the liquid through the filter.
When the liquid is virtually freed of impurities, it may be passed through a second variety of filter, known as a clarifying filter. This type of filter is constructed of extremely fine-mesh wires or fibers designed to remove the smallest particles suspended in the liquid. Clarifying filters may also use diatomaceous earth, a finely powdered material produced from the decay of marine organisms.

Gas Filtration

Gas filtration is used in a common appliance, the vacuum cleaner, which passes a stream of dust-filled air through a filtering bag inside the machine. The bag traps solid particles, while allowing clean air to pass back out into the room. This is essentially the same principle applied in air filters and even air conditioning and heating systems, which, in addition to regulating temperature, also remove dust, pollen, and other impurities from the air.

KEY TERMS

Azeotrope: A solution that has been subjected through distillation and is still not fully separated, but cannot be separated any further by means of distillation. An example is ethanol, which cannot be distilled beyond the point at which it reaches a 95% concentration with water.
Condensate: The liquid product that results from distillation.
Condensation: The cooling of a gas to form a liquid or condensate.
Distillate: The vapor collected from the volatile material or materials in distillation. This vapor is then subjected to condensation.
Distillation: The use of heat to separate the components of a liquid and/or gas. Generally, distillation is used to separate mixtures that are homogeneous.
Filtrate: The liquid or gas separated from a solid by means of filtration.
Filtration: The separation of solids from a fluid (either gas or liquid) by allowing the fluid to pass through a filter. Generally, filtration is used to separate mixtures that are heterogeneous.
Heterogeneous: A term describing a mixture that is not the same throughout; rather, it has various regions possessing different properties. An example is sand in a container of water.
Homogeneous: A term describing a mixture that is the same throughout, as for example when sugar is fully dissolved in water. A solution is a homogenous mixture.
Mixture: A substance with a variable composition, composed of molecules or atoms of differing types. Compare with pure substance.
Pure substance: A substance— either an element or compound—that has an unvarying composition. This means that by changing the proportions of atoms, the result would be an entirely different substance. Compare with mixture.
Solute: The substance or substances that are dissolved in a solvent to form a solution.
Solution: A homogeneous mixture in which one or more substances is dissolved in an another substance—for example, sugar dissolved in water.
Solvent: The substance that dissolves a solute to form a solution.
Suspension: A term that refers to a mixture in which solid particles are suspended in a fluid.
Volatile: Easily vaporized.
Various industries use gas filtration, not only to purify the products released into the atmosphere, but also to filter the air in the workplace, as for instance in a factory room where fine airborne particles are a hazard of production. The gases from power plants that burn coal and oil are often purified by passing them through filtering systems that collect particles.

Sewage Treatment

Sewage treatment is a complex, multistage process whereby waste water is freed of harmful contents and rendered safe, so that it can be returned to the environment. This is a critical part of modern life, because when people congregate in cities, they generate huge amounts of wastes that contain disease-causing bacteria, viruses, and other microorganisms. Lack of proper waste management in ancient and medieval times led to devastating plagues in cities such as Athens, Rome, and Constantinople.
Indeed, one of the factors contributing to the end of the Athenian golden age of the fifth century B.C. was a plague, caused by lack of proper sewage-disposal methods, that felled many of the city’s greatest figures. The horrors created by improper waste management reached their apogee in 1347-51, when microorganisms carried by rats brought about the Black Death, in which Europe’s population was reduced by one-third.


Aerobic and anaerobic decay

Small amounts of sewage can be dealt with through aerobic (oxygen-consuming) decay, in which microorganisms such as bacteria and fungi process the toxins in human waste. With larger amounts of waste, however, oxygen is depleted and the decay mechanism must be anaerobic, or carried out in the absence of oxygen.
For people who are not connected to a municipal sewage system, and therefore must rely on a septic tank for waste disposal, waste products pass through a tank in which they are subjected to anaerobic decay by varieties of microorganisms that do not require oxygen to survive. From there, the waste goes through the drain field, a network of pipes that allow the water to seep into a deep-bed filter. In the drain field, the waste is subjected to aerobic decay by oxygen-dependant microorganisms before it either filters through the drain pipes into the ground, or is evaporated.

Municipal waste treatment

Municipal waste treatment is a much more involved process, and will only be described in the most general terms here. Essentially, large-scale sewage treatment requires the separation of larger particles first, followed by the separation of smaller particles, as the process continues. Along the way, the sewage is chemically treated as well. The separation of smaller solid particles is aided by aluminum sulfate, which causes these particles to settle to the bottom more rapidly.
Through continual processing by filtration, water is eventually clarified of biosolids (that is, feces), but it is still far from being safe. At that point, all the removed biosolids are dried and incinerated; or they may be subjected to additional processes to create fertilizer. The water, or effluent, is further clarified by filtration in a deep-bed filter, and additional air may be introduced to the water to facilitate aerobic decay— for instance, by using algae.
Through a long series of such processes, the water is rendered safe to be released back into the environment. However, wastes containing extremely high levels of toxins may require additional or different forms of treatment.

Next post:

Previous post: