CROPS OF THE EARLY FARMERS (TRANSITION TO AGRICULTURE, 7000–4000 B.C.) (Ancient Europe)

It is generally accepted that the first farmers of Europe grew crops that had been cultivated in the Near East for two thousand years before reaching the shores and inland plains of Greece. Plant remains from Early Neolithic sites indicate that the earliest farming villages, dating to about 6700 b.c., grew emmer, einkorn, and bread wheat; two-row barley; lentils; bitter vetch; peas; and flax. With the exception of emmer wheat, wild species of all of these plants can be found in modern Greece, and several have been recovered from pre-Neolithic levels at Franchthi Cave in the southern Argolid. Nonetheless, there are no data to show that these species were domesticated in Greece; rather, they appear to have been imported along with domesticated emmer wheat from the Near East.

THE FIRST FARMERS

The only site in Greece to have produced pre-Neolithic plant remains is Franchthi Cave in the southern Argolid. There, wild barley (Hordeum spontaneum) and wild lentils (Lensspecies) were collected as early as 10,000 b.c., at the end of the Upper Palaeolithic and throughout the Mesolithic occupation of the cave, until about 6000 b.c. It is possible that both of these plants as well as wild oats (Avena species) were cultivated during this period, but there is no conclusive evidence to support this suggestion. In addition, there was a depositional hiatus in the cave sediments that lasted about five hundred years, after which domesticated emmer wheat and domestic sheep and goats appeared in the deposits. Neither wild nor domestic barley turned up again until the Middle Neolithic period, about 5000 b.c. A few lentils are present in the Early Neolithic levels, but it is not possible to state whether these lentils are wild or domesticated.


In northern Greece, in particular the Thessalian plain, remains of the earliest farming communities are found at the base of large multiperiod mounds, or magoulas. These Early Neolithic villages are fully agricultural, with the complete assemblage of Near Eastern crops. There is no underlying Mesolithic material at these sites to suggest the use or even presence of the wild progenitors of these crops. Until the results of analyses of plant remains from Mesolithic levels at Theopetra Cave, in northern Thessaly, have been completed, it is necessary look to the Near East for the origins of these crops.

CEREAL CROPS

The earliest domesticated plants found on Near Eastern sites are einkorn wheat (Triticum monococ-cum), emmer wheat (Triticum turgidum subspecies dicoccum), two-row barley (Hordeum distichum), rye (Secale cereale), lentils (Lens culinaris), peas (Pisum sativum), bitter vetch (Vicia ervilia), chickpea (Cicer arietinum), and flax (Linum usitatissi-mum). In addition, poppy (Papver somniferum) was domesticated in western Europe, from where it spread eastward. With the exceptions of rye, chickpea, flax, and poppy, all of these species occur in the earliest Neolithic sites in Greece.

The identification of domesticated plants is not always straightforward, especially given the distortions and other damage resulting from carbonization, the most common form of preservation on archaeological sites. Nonetheless, with cereals it is more often possible to identify domesticated versus wild forms from archaeological material. The principal difference between wild and domesticated cereals is the capacity of the wild plant to propagate its seeds through the breakage of the rachis into segments (spikelets) upon ripening; thus the plants are referred to as "brittle rachis" types. Each spikelet carries one or more seeds, depending on the species. When it falls to the ground, the spikelet becomes embedded in cracks in the sediment during the dry spring and early summer months. There it lies dormant until the autumn rains, when a certain proportion of the grains germinate. The rachis segments of the wild type have a smooth scar where the segments have separated from each other by the formation of an abscission layer at the base; this is similar to the layer of tissue formed at the end of a leaf petiole that causes the leaf to fall from the tree in autumn. On a domesticated cereal the tough (non-shattering) rachis segments that have been separated through threshing have a rough, jagged scar, but otherwise they may be found with several segments or a whole ear still intact.

The change from the wild-type brittle rachis to the domestic-type tough rachis is the result of a spontaneous mutation at a single point on the chromosome. Within any wild stand of cereals there will be a small percentage of these mutated forms. The conscious or unconscious selection for and subsequent cultivation of this type of cereal eventually led to the development of fully domesticated fields. How and why this took place is still the topic of debate, and a thorough discussion of this issue is beyond the scope of this essay. Suffice it to say that it is possible to identify wild and domesticated cereals on the basis of the remains of the rachis or spikelet segments.

A second difference between wild and domesticated cereals is in the size and shape of the grains. With sufficient well-preserved material, it usually is possible to distinguish the two. Careful measurements of the length, width, and breadth of the grains and the ratios of these measurements also have proved effective in separating wild and domesticated forms as well as one species from another. It is useful to examine each crop, their wild progenitors, and their natural distribution in the Near East to gain insight into the plants grown by the first farmers of Europe.

Selected sites where remains of wild and domesticated grains have been found.

Selected sites where remains of wild and domesticated grains have been found.

Einkorn Wheat. The wild progenitor of einkorn is Triticum monococcum subspecies boeoticum (fig. 1), which is widespread today in central Anatolia, with stands in the Levant and the Balkan Peninsula as well. It grows on rocky, dry soils and is hardier than other species of wheat. Remains of wild ein-korn have been found on such Epipalaeolithic sites as Abu Hureyra and Mureybet in Syria. The earliest certain remains of domesticated einkorn wheat are found at Cafer Huyuk in southeastern Turkey, dated to 7400-7000 b.c. Although it is not as common as emmer wheat, einkorn is present in small quantities in the earliest farming sites in Thessaly, such as Argissa, Otzaki Magoula, and Soufli Ma-goula, dated to about 6200 b.c.

Emmer Wheat. The wild progenitor of emmer is Triticum turgidum subspecies dicoccoides (fig. 1), which is found in the modern southern Levant, Southeast Turkey, and the Zagros Mountains. It grows in oak park forest and steppe or steppe forest on basalt and limestone. The wild species of emmer wheat has been recovered from the site of Ohalo II in Israel, dated to nineteen thousand years ago. The domesticated form is identified from Cafer Huyuk X-XIII (7400-7000 b.c.), although it also may be present at Tell Aswad (Syria), dated to 7600-7700 b.c. Emmer wheat is present on nearly all Near Eastern sites dated to 7300 b.c. or later that have yielded plant remains. It also predominates on the earliest farming sites in Europe and was the primary domesticated cereal crop as agriculture spread from east to west across the Continent.

Early naked wheat is of two types that are difficult to distinguish in the archaeological record. Bread wheat (Triticum aestivum) is the result of a cross between emmer wheat and Aegilops squarrosa, a wild grass that is distributed principally in modern northern Iran and farther east. It also occurs in eastern Turkey and northern Syria. Macaroni, or hard wheat (Triticum durum), is a naked wheat resulting from a mutation of emmer wheat that causes the grain to be released easily from its husk.

Bread wheat and hard wheat can be distinguished only through careful examination of spike-let remains. Such remains are not often preserved on archaeological sites in quantities sufficient to facilitate this distinction, however. Thus most palaeoeth-nobotanical reports record naked wheat as Triticum aestivum/durum. The first clear evidence of naked wheat on an archaeological site in the Near East comes from Asikli in Turkey, dated to 6800-6400 b.c. It first appears in Greece at the site of Knossos on Crete, dated to 8200-7600 b.c., and on the mainland at Otzaki Magoula in Thessaly, for which no radiocarbon dates exist. These remains, however, occur in the earliest levels of the site that are contemporary with the Knossos remains and those at Argissa, also in Thessaly, which dates to 62005400 b.c.

Barley. Barley also is found both as a hulled and a naked variety as well as in a two-row and a six-row form. The wild progenitor of two-row hulled barley, the earliest domesticated type, is Hordeum spontaneum (fig. 1), which is fairly widespread in the so-called Fertile Crescent, that is, in the Levant, and in the foothills of the Taurus and Zagros Mountains. Genetic data suggest that barley may have been domesticated in two areas of the Near East. A possible form of domesticated barley occurred at Tell Aswad about 7700 b.c. The earliest securely identified domesticates are from Ain Ghazal in Jordan, dated to 7000-6500 b.c.

Some early cereal grains.

Fig. 1. Some early cereal grains.

Wild barley was found at Franchthi Cave in Greece in Upper Palaeolithic and Mesolithic levels dated between 8500-6700 b.c. No barley was found after this point, however, until domestic two-row barley was found in Middle Neolithic levels dated to just after 5980-5640 b.c. Thus it is not possible to argue for indigenous domestication of this species at Franchthi Cave or elsewhere in Greece.

Six-row barley results from a mutation of the two-row type, causing three grains to develop in each spikelet rather than two. It is difficult to distinguish two-row barley from six-row barley in an archaeological sample without sufficient numbers of seeds. The morphological difference between the two species is the basal twisting of the lateral grains of six-row barley. When these lateral grains are seen in a sample, it can be stated with some certainty that six-row barley is present. Their absence does not necessarily mean, however, that this species is not present but only that the lateral grains have not been recovered, preserved, or recognized. At the same time, the presence of twisted grains does not preclude the presence of two-row barley as well. Naked barley is a later development in the Near East, occurring first in Pre-Pottery Neolithic B (PPNB) sites, such as Jericho, Tell Aswad, and Abu Hureyra between 7000-6400 b.c.

Rye. Rye (Secale cereale) was thought to have been initially domesticated in Europe, where it is an important modern crop, but studies of plant remains from Epipalaeolithic and Pre-Pottery Neolithic sites in Syria have shown that it was first domesticated in the Near East. The wild progenitor of domesticated rye is most likely Secale cereale sp. vavilovii, which grows in fairly dense stands on the lower slopes of Mount Ararat in eastern Turkey and in south-central Turkey near the border with Syria. In the past the distribution of this plant was probably more widespread. Another species of wild rye, Secale mon-tanum, and domesticated rye were found in the Epipalaeolithic levels of Abu Hureyra, Syria, dated to 11,000 to 10,600 years ago. Domesticated rye appears with domesticated emmer and einkorn wheat in the PPNB levels of this site as well as at Can Hasan III in Turkey. The first appearances of domesticated rye in Europe are in the Late Neolithic site of Skoteini in Euboeia, Greece, and several Eneolithic sites of the Gumelnitsa culture (50004300 b.c.).

Legumes. The three important legume crops that are found on Early Neolithic sites are lentils (Lens culinaris), peas (Pisum sativum), and bitter vetch (Vicia ervilia). Chickpeas (Cicer arietinum) are also among the early domesticated legumes in the Near East, but they do not become common until the Late Neolithic in Greece. The principal difference between wild and domestic legumes, as with cereals, is their ability to propagate their own seeds. The pods ofwild legumes are dehiscent, that is, they split upon ripening, thus scattering the seeds. In domesticated legumes the pods are indehiscent and remain closed when they mature. Since pods are rarely preserved on archaeological sites, it is the increase in seed size that generally has been used to distinguish between wild and domesticated species, but this is a gradual development and cannot be established with certainty at the earliest agricultural sites. Thus legumes from Neolithic contexts are not always identified as the domesticated species, although they usually are presumed to have been cultivated.

The wild progenitor of domestic lentils is Lens orientalis, which has a distribution in the foothills of the Zagros and Taurus Mountains, a distribution similar to those of the wild cereals. This species, along with two others, Lens nigricans and L. er-voides, also are known from modern Greece. Lentils were recovered from Upper Palaeolithic and Meso-lithic levels at Franchthi Cave in Greece, but it is not possible to determine their species. The lentils from Neolithic levels in the cave are, on average, somewhat larger than the earlier specimens, but there is a significant overlap in seed diameter; thus it is not possible to state with certainty that the Neolithic lentils are the domesticated Lens culinaris. Together with the depositional problems mentioned earlier, this precludes the possibility of determining whether or not lentils were domesticated in Greece separately from a Near Eastern origin. Lentils are present at one Mesolithic site (Balma Abeurador/ Herault) in southern France, dated to about 6700 b.c., but all other finds are from Neolithic or later contexts, where the other Near Eastern crop plants are present.

It is possible to distinguish wild peas (Pisum humile) from the domesticated variety (Pisum sativum) on the basis of the rough seed coat found in the former. Unfortunately, seed coats are not often preserved in archaeological material, making identification uncertain at times. Wild pea was identified at Franchthi Cave from Mesolithic levels on the basis of the rough seed coat that was preserved on one specimen. Botanical evidence suggests that peas were domesticated in the Near East, probably from populations of P. humile in Turkey and Syria. Like lentils, peas have been identified from Balma Abeurador/Herault in southern France and elsewhere only in Neolithic and later contexts.

Modern use of bitter vetch is primarily as fodder for animals, but it was a common legume collected in the Epipalaeolithic of the Near East and probably was cultivated in the earliest agricultural sites. Wild bitter vetch grows in modern Turkey and northern Iraq and can be found as a weed in cereal crops. In Europe bitter vetch was identified in the Upper Palaeolithic levels of Franchthi Cave in Greece and also occurs in the Middle Neolithic at this site. In Thessaly the earliest appearance of bitter vetch is in the Aceramic Neolithic levels of Sesklo. Along with lentils and peas, it is present at Balma Abeurador but is otherwise found only on Neolithic and later sites in Europe with the Near Eastern assemblage of crop plants.

The wild progenitor of domesticated chickpea is Cicer reticulatum, which grows in modern Southeast Turkey. It can be distinguished from the domesticated form by the reticulate or netlike pattern of ridges on its seed coat, which becomes smooth in the domesticated species. The earliest remains of chickpeas are reported from Pre-Pottery Neolithic A (PPNA) levels at Jericho and PPNB levels at Cayonu and Abu Hureyra. In Greece the first evidence of chickpeas is at the Early Neolithic site of Otzaki Magoula in Thessaly, but it does not appear on other sites until the Late Neolithic. It is not found in the northern Balkans or elsewhere in Europe until the Bronze Age.

Flax. Wild flax (Linum bienne), the progenitor of the domesticated species, is widespread from western Europe to the Near East and Caucasia. It grows in moist or wet environments near springs. The primary morphological difference between wild and domesticated flax forms is the development of an in-dehiscent capsule and larger seeds in the latter. Wild flax has been identified from Epipalaeolithic and Early Neolithic sites in the Near East. Domesticated flax is present from Pre-Pottery Neolithic B levels at Ramad in Syria, dated to c. 7200 b.c. The latter findings were attributed to the domesticated species on the basis of seed length, which ranged from 3.2 to 4.1 millimeters; the wild species do not exceed 3.0 millimeters. Domesticated flax has been recorded from Early Neolithic sites in northern Greece, and it is present in the earliest farming sites in central Europe south of the Danube, dated to 5700-5500 b.c. It occurs with the full complement of Near Eastern domesticated plants and was brought into the region at this time.

Poppy. The only plant that most likely was domesticated in Europe is the poppy (Papaver somniferum). The wild progenitor of this plant is Papaver som-niferum subspecies setigerum, which is native to the western Mediterranean basin. The primary difference between the wild and domesticated plants is the indehiscence of the capsule in the domesticated species. Poppy seeds are underrepresented on archaeological sites, because they are so small that their recovery depends on careful flotation methods with screens of 0.5-millimeter mesh or smaller. Poppy seeds occur on Late Neolithic sites in southern France and Spain as well as in central Europe. Thus it is a later addition to the suite of cultivars introduced from the east, although the absence of poppy from earlier sites may be due to the recovery techniques rather than to their absence from the sites. Remains of poppy seeds or capsules have not been recovered from Neolithic contexts in the Near East or southeastern Europe.

FARMING PRACTICES

The conditions under which crops were grown, such as soil types, season of planting and harvesting, and crop-processing methods, can be determined to some extent from the weed assemblage associated with the crop plants. Weeds have a range of environmental requirements that dictate the types of soils in which they can grow best, such as light, sandy loam versus heavy clay-rich soils. Like all plants, weeds will flower and set seed within a particular time range corresponding to climate and daylight length. In some cases, this timing mimics that of the crop the weed infests, such as wild oats, which set seed at the same time, late spring, as do the winter-sown cereals emmer and einkorn wheat. Crop-processing activities, such as the method of harvesting, may be determined by knowing such characteristics as the height of weeds that occur in archaeological deposits. The presence of low-growing weeds among the cereal grains may indicate that the crops were harvested by cutting the stems fairly low to the ground. With respect to the earliest agricultural sites in Europe, relatively few remains exist overall, and many of the small seeds cannot be identified as to species or even genus. Nonetheless, it is possible to suggest some agricultural practices from the available evidence.

At the preceramic site of Argissa in the Thessa-lian plain, plants such as oat (Avenaspecies), ryegrass (Lolium temulentum), and corn cockle (Agrostem-ma githago) are typical weeds of winter-sown cereals and would have infested the emmer and einkorn crops. At the same time, the presence of species belonging to the Chenopodiaceae family (e.g., lamb’s-quarter) and the Polygonaceae family (e.g., dock) suggest that some crops may have been spring grown on heavy soils. The exact species represented from these families have not been identified, so it is not possible to be certain of this suggestion.

At the Early Neolithic sites of Sesklo in Thessaly and Toumba Balomenou in Boeotia, heavier soils also were cultivated, based on the presence of bed-straw (Galium aparine) as well as Chenopodiaceae and Polygonaceae species. Species of these families along with mallow (Malva species) and purslane (Portulaca species) also provide an indication of possibly spring-grown crops. Portulaca is a typical weed of legume crops. At these early agricultural sites cereals might have been sown in the autumn, when the rains made the soils easier to work with a hoe. Legumes, such as lentils, peas, and bitter vetch, could have been sown on the same land in the spring, after the cereal harvest. There is not enough evidence to indicate that fallowing and crop rotation were practiced, although it certainly is possible.

Analysis of the settlement pattern of the earliest farming village in Thessaly suggests that, while some sites were located in the floodplain of the Peneios River, others were established to the south, well away from this watercourse but still in the lowlands of the plain. Still others were in the uplands 100 to 200 meters above sea level. In each of these areas the soils would have varied, and thus the farming practices and weed types also would have been somewhat different. Farmers nearest a river that flooded annually may have taken advantage of the deposition of silt to plant crops primarily in the spring. In the drier areas of the basin and in the uplands, farmers would have had to rely on autumn and winter rains and would have planted their crops accordingly.

The scale of farming most likely was small. None of the excavated sites has shown evidence of storage facilities in the form of pits, silos, or large ceramic vessels that could have held a large surplus of grain or other crops. Rather, it seems likely that agriculture provided sufficient food for the households with seed held back for the next year’s crop. Storage, in this case, could have been in the form of baskets or bags that have not survived.

SUMMARY

The primary crops grown by the first farmers in Europe initially were domesticated in the Near East and brought to Greece about eight thousand years ago. Although wild forms of a number of the crops can be found in preagricultural sites in Greece and France, the domesticated forms of these plants appeared with the rest of the Near Eastern assemblage of crops. Poppy is the only plant that initially was domesticated in Europe, although there is no clear evidence for its presence before the Late Neolithic.

In Greece the earliest farming villages are located in various types of environments, such as near rivers, on drier lowland, or in uplands. For those sites for which data exists, it seems that planting took place both in the spring on heavy soils and in the autumn on drier rain-fed soils. Farming would have been conducted on a small scale with sufficient cereals and legumes for the household rather than production of surplus for the community or for exchange.

Although dogs, the first domestic animal, were already widespread among the later hunter-gatherers of Europe, livestock (domestic herd animals) appeared only with the first farmers (Early Neolithic). Like plant agriculture, these animal domesticates originated in the Near East. While in the Near East plant agriculture precedes herding, domestic plants and animals arrived in Europe as part of a mixed farming package. By the time it reached Europe, this package included the main farm animals of today (excluding the horse): cattle, sheep, goats, and pigs. However, they would not have looked much like our familiar barnyard animals, since they were still quite close to their wild ancestors in appearance.

ANIMAL DOMESTICATION

Animal domestication is a complex process involving both biological and social changes that may occur at different rates. The key change is from hunting to herding: controlling the movement and breeding of animals and protecting them from predators. This control may be loose or tight; stricter control will lead to more rapid biological changes. On the other hand, if livestock are allowed or even encouraged to interbreed with wild populations, as is sometimes the case even today, there will be no genetic isolation of wild and domestic populations and therefore little opportunity for biological differentiation.

Once a domestic population is isolated, a number of physical and behavioral changes are likely to occur. These include changes in the color of the coat, the size and shape of horns, the shape of the face, and body proportions. The breeding season may become longer and less seasonal. Early herders may have deliberately selected for docile behavior; in any case more placid animals fare better under domestication. This probably accounts for the reduction in brain size seen in most domestic animals. Although the reasons for this are unclear, the early domesticates (including dogs, sheep, goat, cattle, and pigs) decreased in size compared to their wild ancestors. While herders sometimes may have selected for smaller animals that were easier to control, it is likely that most of this happened without conscious intervention. Domestic animals often must subsist on limited food (due to the restriction of their movements), which would favor smaller animals. Human control of breeding and protection from predators would also relax some of the pressure to be large. In any case, this is a particularly useful feature of domestication from the archaeological point of view. Size change can be detected by measuring the anatomical features of the animal bones recovered from archaeological sites, providing one of the key methods for identifying animal domestication.

Size changes must be interpreted cautiously, however. Work on goats from Ganj Dareh in Iran, the site with the earliest evidence of goat domestication, shows that an apparent reduction in size actually results from killing off most of the larger males at an early age. Zooarchaeologists usually only measure mature bones, since it is difficult to compare measurements of bones that have not reached their full size. This illustrates that size reduction, which does occur later in the domestication process in many animals, must be assessed by examining the entire range of measurements, not just by comparing means. There is also geographical variation in the size of both wild and domestic animals, so assemblages from different areas should not be compared uncritically.

Next post:

Previous post: