Geoscience Reference
In-Depth Information
DEC
JAN
FEB
JUN
JUL
AUG
180˚
180˚
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
20˚N
20˚N
120˚W
120˚E
120˚W
120˚E
40˚N
40˚N
60˚N
60˚N
ID
ID
NP
NP
GM
GM
60˚W
60˚E
60˚W
60˚E
15
10
DEC
JAN
FEB
JUN
JUL
AUG
GM
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
GM
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
60˚W
60˚E
60˚W
60˚E
20˚N
20˚N
40˚N
40˚N
60˚N
60˚N
SP
SP
120˚W
120˚E
120˚W
ID
ID
180˚
180˚
Plate 7.2 Probability of jet stream velocity (vertically integrated between 100 and 400mb) exceeding 30m s -1
based on ECMWF reanalyis data 1982-1992. Units are in percentages. A: Northern Hemisphere winter, DJF. B:
Northern Hemisphere summer, JJA. C: Southern Hemisphere summer, DJF. D: Southern Hemisphere winter, JJA.
Courtesy of Patrick Koch and Sarah Kew, Institute for Atmospheric and Climate Science, ETH, Zurich.
The latitude of the subtropical high pressure
belt depends on the meridional temperature
difference between the equator and the pole
and on the temperature lapse rate (i.e., vertical
stability). The greater the meridional temperature
difference the more equatorward is the location of
the subtropical high pressure belt ( Figure 7.11 ).
In low latitudes there is an equatorial trough of
low pressure, associated broadly with the zone of
maximum insolation and tending to migrate with
 
Search WWH ::




Custom Search