Geoscience Reference
In-Depth Information
5.5 GENERAL MONOGRAPHS AND TOPICS
The reader is referred to p. 24 for a list of relevant general monographs and
topics.
5.6 REFERENCES AND BIBLIOGRAPHY
Adams-Selin, R. D. and R. H. Johnson (2010) Mesoscale surface pressure and temperature
features associated with bow echoes. Mon. Wea. Rev., 138, 212-227.
Biggerstaff, M. I. and R. A. Houze, Jr. (1991a) Kinematic and precipitation structure of the
10-11 June 1985 squall line. Mon. Wea. Rev., 119, 3034-3065.
Biggerstaff, M. I. and R. A. Houze, Jr. (1991b) Midlevel vorticity structure of the 10-11 June
1985 squall line. Mon. Wea. Rev., 119, 3066-3079.
Biggerstaff, M. I. and R. A. Houze, Jr. (1993) Kinematics and microphysics of the transition
zone of the 10-11 June 1985 squall line. J. Atmos. Sci., 50, 3091-3110.
Bluestein, H. B. and M. H. Jain (1985) Formation of mesoscale lines of precipitation: Severe
squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711-1732.
Bluestein, H. B. and G. T. Marx (1987) Formation of mesoscale lines of precipitation:
Nonsevere squall lines in Oklahoma during the spring. Mon. Wea. Rev., 115, 2719-2727.
Braun, S. A. and R. A. Houze, Jr. (1994) The transition zone and secondary maximum of
radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar
data. J. Atmos. Sci., 51, 2733-2755.
Braun, S. A. and R. A. Houze, Jr. (1996) The heat budget of a midlatitude squall line and
implications for potential vorticity production. J. Atmos. Sci., 53, 1217-1240.
Braun, S. A. and R. A. Houze, Jr. (1997) The evolution of the 10-11 June 1985 PRE-STORM
squall line: Initiation, development of rear inflow, and dissipation. Mon. Wea. Rev., 125,
478-504.
Browning, K. A. and F. H. Ludlam (1962) Airflow in convective storms. Quart. J. Roy.
Meteor. Soc., 88, 117-135.
Bryan, G. H. and J. M. Fritsch (2000) Moist absolute instability: The sixth static stability
state. Bull. Amer. Meteor. Soc., 81, 1207-1230.
Coniglio, M. C., D. J. Strensrud, and L. J. Wicker (2006) Effects of upper-level shear on the
structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos.
Sci., 63, 1231-1252.
Davis, C. A. and M. L. Weisman (1994) Mesoscale vortices produced in simulated convective
systems. J. Atmos. Sci., 51, 2005-2030.
Davis, C. A., N. Atkins, D. Bartels, L. Bosart, M. Coniglio, G. Bryan, W. Cotton, D. Dowell,
B. Jewett, R. Johns et al. (2004) The Bow Echo and MCV Experiment. Bull. Amer.
Meteor. Soc., 85, 1075-1093.
Emanuel, K. A. (1994) Atmospheric Convection, Oxford University Press, New York, Chapters
1-6, 9-11.
Fovell, R. G. and Y. Ogura (1988) Numerical simulation of a midlatitude squall line in two
dimensions. J. Atmos. Sci., 45, 3846-3879.
Fovell. R. G., G. L. Mullendore, and S.-H. Kim (2006) Discrete propagation in numerically
simulated nocturnal squall lines. Mon. Wea. Rev., 134, 3735-3752.
Fritsch, J. M. and G. S. Forbes (2001) Mesoscale convective systems. Chapter 9 in: C. Doswell,
III (Ed.), Severe Convective Storms, AMS Monogr. Vol. 28, Issue 50, American
Meteorological Society, Boston, pp. 323-357.
Fujita, T. (1955) Results of detailed synoptic studies of squall lines. Tellus, 4, 405-436.
Gallus, W. A., Jr. and R. H. Johnson (1995a) The dynamics of circulations within the trailing
stratiform regions of squall lines, Part I: The 10-11 June PRE-STORM system. J. Atmos.
Sci., 52, 2161-2187.
Search WWH ::




Custom Search