Geoscience Reference
In-Depth Information
Stommel, H. (1947) Entrainment of air into a cumulus cloud. J. Meteor., 4, 91-94.
Thorpe, A. J., M. J. Miller, and M. W. Moncrieff (1982) Two-dimensional convection in
non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc.,
108, 739-762.
Wakimoto, R. M. (1985) Forecasting dry microburst activity over the High Plains. Mon. Wea.
Rev., 113, 1131-1143.
Wakimoto, R. M and V. N. Bringi (1988) Dual-polarization observations of microbursts
associated with intense convection: The 20 July storm during the MIST Project. Mon.
Wea. Rev., 116, 1521-1539.
Wakimoto, R. M., C. J. Kessinger, and D. E. Kingsmill (1994) Kinematic, thermodynamic,
and visual structure of low-reflectivity microbursts. Mon. Wea. Rev., 122, 72-92.
Wang, L. and K. Sassen (2006) Cirrus mammatus properties derived from an extended remote
sensing dataset. J. Atmos. Sci., 63, 712-725.
Weisman, M. L. and J. B. Klemp (1986) Characteristics of isolated convective storms. In: P. S.
Ray (Ed.), Mesoscale Meteorology and Forecasting, American Meteorological Society,
Boston, pp. 331-358.
Weisman, M. L. and R. Rotunno (2004) A theory for strong-lived squall lines revisited.
J. Atmos. Sci., 61, 361-382.
Wilson, J. W. and R. M. Wakimoto (2001) The discovery of the downburst: T. T. Fujita's
contribution. Bull. Amer. Meteor. Soc., 82, 49-62.
Winstead, N. S., J. Verlinde, S. T. Arthur, F. Jaskiewicz, M. Jensen, N. Miles, and D. Nicosia
(2001) High-resolution airborne radar observations of mammatus. Mon. Wea. Rev., 129,
159-166.
Xu, Q., M. Xue, and K. K. Droegemeier (1996) Numerical simulations of density currents in
sheared environments within a vertically confined channel. J. Atmos. Sci., 53, 770-786.
Yang, M.-J. and R. A. Houze (1995) Multicell squall-line structure as a manifestation of
vertically propagating trapped gravity waves. Mon. Wea. Rev., 123, 641-661.
Search WWH ::




Custom Search