Geoscience Reference
In-Depth Information
d * - dimensionless mean particle diameter.
g ‖ - magnitude of the gravitational vector.
μ f - fluid viscosity.
REFERENCES
Aas, T., Howell, J., Janocko, M. and Jackson, C.A.L. (2010a)
Control of Aptian palaeobathymetry on turbidite distri-
bution in the Buchan Graben, Outer Moray Firth,
Central North Sea. Mar. Petrol. Geol. , 27 , 412−434.
Aas, T.E., Howell, J.A., Janocko, M. and Midtkandal, I.
(2010b) Re-created Early Oligocene seabed bathymetry
and process-based simulations of the Peïra Cava turbid-
ite system. J. Geol. Soc. , 167 , 857−875.
Abreu, V., Sullivan, M., Pirmez, C. and Mohrig, D. (2003)
Lateral accretion packages (LAPs): an important reser-
voir element in deep water sinuous channels. Mar.
Petrol. Geol. , 20 , 631−648.
Amos, K.J., Peakall, J., Bradbury, P.W., Roberts, M., Keevil,
G. and Gupta, S. (2010) The influence of bend amplitude
and planform morphology on flow and sedimentation in
submarine channels. Mar. Petrol. Geol. , 27 , 1431−1447.
Baas, J.H., Van Kesteren, W. and Postma, G. (2004) Deposits
of depletive high-density turbidity currents: a flume
analogue of bed geometry, structure and texture.
Sedimentology , 51 , 1053−1088.
Basani, R. and Hansen, E.W.M. (2009) MassFLOW-3D Process
Modelling; Three-dimensional numerical forward model-
ling of submarine massflow processes and sedimentary
successions. Project report 2004-2008. CFD-R09-1-09.
Cartigny, M.J.B. (2012) Morphodynamics of supercritical
high-density turbidity currents. Utrecht Studies in
Earth Sciences , 10 (doctoral thesis), 153 pp.
Cartigny, M.J.B., Postma, G., van den Berg, J.H. and
Mastbergen , D.R. (2011) A comparative study of sediment
waves and cyclic steps based on geometries, internal struc-
tures and numerical modelling. Mar. Geol. , 280 , 40-56.
Clift, R., Grace, J.R. and Weber, M.E. (1978) Bubbles, Drops
and Particles . Academic Press, New York.
Corney, R.K.T., Peakall, J., Parsons, D.R., Elliott, L., Amos,
K.J., Best, J.L., Keevil, G.M. and Ingham, D.B. (2006)
The orientation of helical flow in curved channels.
Sedimentology , 53 , 249−257.
Dan, G., Sultan, N. and Savoye, B. (2007) The 1979 Nice
harbour catastrophe revisited: Trigger mechanism
inferred from geotechnical measurements and numeri-
cal modelling. Mar. Geol. , 245 , 40−64.
Duller, R.A., Mountney, N.P. and Russell, A.J. (2010)
Particle Fabric and Sedimentation of Structureless
Sand, Southern Iceland. J. Sed. Res. , 80 , 562.
Dykstra, M. and Kneller, B. (2009) Lateral accretion in a
deep-marine channel complex: implications for channel-
lized flow processes in turbidity currents. Sedimentology ,
56 , 1411−1432.
Egiazaroff, I.V. (1965) Calculation of nonuniform sediment
concentrations. J. Hydr. Div. , 91 , 225−247.
FLOW-3D (2009) FLOW-3D User Manual Version 9.4 .
Groenenberg, R.M., Hodgson, D.M., Prelat, A., Luthi, S.M.
and Flint, S.S. (2010) Flow-deposit interaction in sub-
marine lobes: insights from outcrop observations and
realizations of a process-based numerical model. J. Sed.
Res. , 80 , 252.
Groenenberg, R.M., Sloff, K. and Weltje, G.J. (2009) A high-
resolution 2-DH numerical scheme for process-based
modelling of 3-D turbidite fan stratigraphy. Comput.
Geosci , 35 , 1686−1700.
τ
θ
=
- local Shields parameter at
(
)
i
g
d
ρρ
si
,
si
,
f
the bed interface (it is computed based on the
local shear stress, τ).
f
θ
θ
packed
f
=
018
.
i
1
- the volume fraction of
bi
,
′′
d
*
cr i
,
the bed-load layer is predicted by van Rijn (1984).
05
.
δ
θ
θ
07
.
- bed load thickness, d 50
i
=
03
.
d
i
1
*
′′
d
50
cr i
,
- local mean particle size in the computational
cell.
u
u
, , = - the direction of the motion
is determined from the motion of the liquid adja-
cent to the packed bed interface.
u bedload i
u
bedload i
q
bi
,
u
= δ
- velocity of the sediment in each
bedload i
,
f
ibi
,
computational cell.
1
2
ρρ
ρ
si
.
f
′′
15
.
3
- volumetric
q
=
βθ θ
(
)
g
d
bi
,
i
i
cr i
,
si
,
f
bed-load transport rate per unit width.
β i - bedload coefficient is typically equal to 8.0,
(Van Rijn, 1984).
2
2
2
2
cosin
ψβ βφ ψβ
φ
s
+
cos
tansin
+
sin
′′ =
i
θ
θ
cr i
,
cri
,
tan
i
- the critical Shields parameter modified for slop-
ing surfaces to include the angle of repose,
(Soulsby 1997).
1 666667
.
θ
′ =
θ
- the critical Shields
cr i
,
cri
,
2
d
d
si
,
log
19
10
50
parameter modified by the effect of armouring
(Egiazaroff, 1965).
β - computed angle of the packed interface normal
relative to the gravitational vector g .
ϕ i , ψ - user-defined angle of repose for sediment
species i and angle between the flow and the
upslope direction, respectively.
 
Search WWH ::




Custom Search