Geoscience Reference
In-Depth Information
Krishna Murthy, B. V., Ravindran, S., Viswanathan, K. S., Subbarao, K. S. V.,
Patra, A. K., and Rao, P. B. (1998). Small scale (3 m) irregularities at and off the
magnetic equator. J. Geophys. Res . 103 , 20,761.
Kudeki, E., and Farley, D. T. (1989). Aspect sensitivity of equatorial electrojet irregular-
ities and theoretical implications. J. Geophys. Res. 94 , 426-434.
Kudeki, E., Bhattacharyya, S., andWoodman, R. F. (1999). A new approach in incoherent
scatter F region E
×
B drift measurements at Jicamarca. J. Geophys. Res . 104 , 28,145.
Kudeki, E., Farley, D. T., and Fejer, B. G. (1982). Long wavelength irregularities in the
equatorial electrojet. Geophys. Res. Lett . 9 , 684.
Kudeki, E., Fejer, B. G., Farley, D. T., and Hanuise, C. (1987). The CONDOR Equatorial
Electrojet Campaign: Radar results. J. Geophys. Res . 92 , 13,561.
Kudeki, E., Akgiray, A., Milla, M., Chau, J. L., and Hysell, D. L. (2007). Equato-
rial spread-F initiation: Post-sunset vortex, thermospheric winds, gravity waves.
J. Atmos. Solar-Terr. Phys . 69 (17-18), 2416-2427.
LaBelle, J., Kelley, M. C., and Seyler, C. E. (1986). An analysis of the role of drift waves
in equatorial spread F. J. Geophys. Res . 91 , 5513.
Livingston, R. C., Rino, C. L., McClure, J. P., and Hanson, W. B. (1981). Spectral char-
acteristics of medium-scale equatorial F-region irregularities. J. Geophys. Res . 86 ,
2421.
Makarevitch, R. A., Koustov, A. V., Sofko, G. J., André, D., andOgawa, T. (2002). Multi-
frequency measurements of HF Doppler velocity in the auroral E region. J. Geophys.
Res. 107 , 1212, doi:10.1029/2001JA000268.
McDonald, B. E., Coffey, T. P., Ossakow, S., and Sudan, R. N. (1974). Preliminary
report of numerical simulation of type 2 irregularities in the equatorial electrojet .
J. Geophys. Res . 79 , 2551.
———. (1975). Numerical studies of type 2 equatorial electrojet irregularity development.
Radio Sci . 10 , 247.
McDonald, B. E., Keskinen, M. J., Ossakow, S. L., and Zalesak, S. T. (1980). Computer
simulation of gradient drift instability processes in operation Avefria. J. Geophys.
Res. 85 , 2143.
Mendillo, M., Meriwether, J., and Biondi, M. (2001). Testing the thermospheric neu-
tral wind suppression mechanism for day-to-day variability of equatorial spread F.
J. Geophys. Res. 106 , 3655.
Narcisi, R. S., and Szusczewicz, E. P. (1981). Direct measurements of electron density,
temperature, and ion composition in an equatorial spread F ionosphere. J. Atmos.
Terr. Phys. 43 , 463.
Oppenheim, M. M. (1997). Evidence and effects of a wave-driven nonlinear current in
the equatorial electrojet. Ann. Geophys . 15 , 899.
Oppenheim, M. M., and Otani, N. F. (1996). Special characteristics of the Farley-
Buneman instability: Simulations versus observations. J. Geophys. Res . 101 ,
24,573.
Ossakow, S. L. (1981). Spread F theories—A review. J. Atmos. Terr. Phys . 43 , 437.
Otani, N. F., and Oppenheim, M. M. (1998). A saturation mechanism for the Farley-
Buneman instability. Geophys. Res. Lett. 25 , 1833.
———. (2006). Saturation of the Farley-Buneman instability via three-mode coupling.
J. Geophys. Res. 111 , 3302.
Patra, A. K., and Rao, P. B. (1999). High-resolution radar measurements of turbulent
structure in the low latitude E region. J. Geophys. Res. 104 , 24,667.
Search WWH ::




Custom Search