Geoscience Reference
In-Depth Information
10 2
10 2
Aphia minuta
R 2 = 0.06
p > 0.05
Liza ramada
R 2 = 0.03
p > 0.05
10 1
10 1
10 0
10 0
0
20
40
60
80
100
120
140
0
20
40
60
80
100
120
140
10 2
Argyrosomus regius
R 2 = 0.13
p > 0.05
10 2
Liza saliens
R 2 = 0.06
p > 0.05
10 1
10 1
10 0
10 0
0
20
40
60
80
100
120
140
0
20
40
60
80
100
120
140
10 2
10 3
Pomatoschistus spp.
R 2 = 0.13 (0.08 − 0.18)
p > 0.05
Cyprinus carpio
R 2 = 0.55 (0.46 − 0.61)
p < 0.01
10 2
10 1
10 1
10 0
10 0
0
20
40
60
80
100
120
140
0
20
40
60
80
100
120
140
10 2
10 3
Pomadasys incisus
R 2 = 0.1
p > 0.05
Dicentrarchus punctatus
R 2 = 0.24 (0.17 − 0.31)
p < 0.01
10 2
10 1
10 1
10 0
10 0
0
20
40
60
80
100
120
140
0
20
40
60
80
100
120
140
10 3
10 2
Sardina pilchardus
R 2 = 0.11 (0.02 − 0.21)
p > 0.05
Engraulis encrasicolus
p 2 = 0.53 (0.49 − 0.57)
p < 0.01
10 2
10 1
10 1
10 0
10 0
20
40
60
80
100
120
140
0
20
40
60
80
100
120
140
Total Length (mm)
Total Length (mm)
Figure 8 Predator length, species identity and the number of mysid prey: Represents
the number of mysid prey as a function of the length of each individual predator for
each of the 10 fish species studied. Each plot shows the correlation coefficient values
(top left): R 2 , the confidence interval (only for the significant relationships) and the
p-value. The relation is significant for three of the species and the proportion of
variance accounted for in these three species is 44%.
the same across the 10 most abundant fish species, but note that the
sampling effort is now almost one order of magnitude more than in the
Gary Polis plot, this is a number around 1000 individuals sampled per
Search WWH ::




Custom Search