Geoscience Reference
In-Depth Information
Mandal, P. (2012b). Seismogenesis of the uninterrupted occurrence of the aftershock activity
in the 2001 Bhuj earthquake zone, Gujarat, India, during 2001-2010. Natural Hazards ,
65, 1063-1083.
Mandal, P., and Chadha, R. K. (2008). Three-dimensional velocity imaging of the Kachchh
seismic zone, Gujarat, India. Tectonophysics , 452, 1-16.
Mandal, P., and Horton, S. (2007). Relocation of aftershocks, focal mechanisms and stress
inversion: implications toward the seismo-tectonics of the causative fault zone of
M w 7.6 2001 Bhuj earthquake (India). Tectonophysics , 429, 61-78.
Mandal, P., and Pandey, O. P. (2010). Relocation of aftershocks of the 2001 Bhuj earthquake:
a new insight into seismotectonics of the Kachchh seismic zone, Gujarat, India. Journal
of Geodynamics , 49, 254-260.
Mandal, P., and Pujol, J. (2006). Seismic imaging of the aftershock zone of the 2001 M w 7.7
Bhuj earthquake, India. Geophysical Research Letters , 33, L05309, 1-4.
Mandal, P., and Rastogi, B. K. (2005). Self-organized fractal seismicity and b-value of
aftershocks of 2001 Bhuj earthquake in Kutch (India). Pure and Applied Geophysics ,
162, 53-72.
Mandal, P., Rastogi, B. K., Satyanarayana, H. V. S., and Kousalya, M. (2004a). Results
from local earthquake velocity tomography: implications toward the source process
involved in generating the 2001 Bhuj earthquake in the lower crust beneath Kachchh
(India). Bulletin of the Seismological Society of America , 94(2), 633-649.
Mandal, P., Jainendra, S., Joshi, S. K., Bhunia R., and Rastogi, B. K. (2004b). Low coda-Qc
in the epicentral region of the 2001 Bhuj earthquake of M w 7.7. Pure and Applied
Geophysics , 161, 1635-1654.
Mandal, P., Chadha, R. K., Raju, I. P., et al . (2007). Coulomb static stress variations in the
Kachchh, Gujarat, India: implications for the occurrences of two recent earthquakes
(M w 5.6) in the 2001 Bhuj earthquake region. Geophysical Journal International , 169,
81-285.
Mandal, P., Satyamurthy, C., and Raju, I. P. (2009). Iterative de-convolution of the local
waveforms: characterization of the seismic sources in Kachchh, India. Tectonophysics ,
478, 143-157.
Manglik, A., and Singh, R. N. (2002). Thermomechnical structure of the central Indian
shield: constraints from deep crustal seismicity. Current Science , 82, 1151-1157.
McClay, K., and Bonora, M. (2001). Analog models of restraining stop-overs in strike-slip
fault systems. American Association of Petroleum Geologists Bulletin , 85, 233-260.
Mechie, J., Keller, G. R., Prodehl, C., et al . (1994). Crustal structure beneath the Kenya rift
from axial profile data. In Crustal and Upper Mantle Structure of the Kenya Rift , ed.
C. Prodehl, G. R. Keller, and M. Khan,. Tectonophysics , 236. 179-199.
Miller, S. A., Collettni, C., Chlaraluce, L., et al . (2004). Aftershocks driven by a high
pressure CO 2 source at depth. Nature , 427, 724-727.
Mishra, O. P., and Zhao, D. (2003). Crack density, saturation rate and porosity at the 2001
Bhuj, India, earthquake hypocenter: a fluid-driven earthquake. Earth and Planetary
Science Letters , 212, 393-405.
Mogi, K. (1968). Migration of seismic activity. Bulletin of the Earthquake Research Insti-
tute, University of Tokyo , 46, 53-74.
Mohan, K. (2013). Identification of Kachchh Mainland fault and South Wagad fault from
magnetotellurics. ISR Annual Report 2012-13 , pp. 31-32, www.isr.gujarat.gov.in .
Mooney, W. D., and Christensen, N. I. (1994). Composition of the crust beneath the Kenya
Rift. Tectonophysics , 236, 391-408.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Search WWH ::




Custom Search