Geoscience Reference
In-Depth Information
Santhanam, M., Hautala, R.R., Sweeny, J.G., and Iacobucci, G.A. (1983). The influence
of flavanoid sulfonates on the fluorescence and photochemistry of flavylium cations.
Photochem. Photobiol ., 38 , 477-480.
Santos, E.B.H., Filipe, O.M.S., Duarte, R.M.B.O., Pinto, H., and Duarte, A.C. (2000).
Fluorescence as a tool for tracing the organic contamination from pulp mill effluents
in surface waters. Acta Hydrochim. Hydrobiol ., 28 , 364-371.
Saraceno, J.F., Pellerin, B.A., Downing, B.D., Boss, E., Bachand, P.A.M., and Bergamaschi,
B.A. (2009). High-frequency in situ optical measurements during a storm event:
Assessing relationships between dissolved organic matter, sediment concentrations, and
hydrologic processes. J. Geophys. Res. Biogeosci . 114 , doi: 10.1029/2009JG000989
Schulman, S.G. (1985). Luminescence spectroscopy: An overview. In S.G. Schulman
(Ed.), Molecular Luminescence Spectroscopy - Methods and Applications; Part 1 (pp.
1-28). New York: John Wiley & Sons.
Scott, D.T., McKnight, D.M., Blunt-Harris, E.L., Kolesar, S.E., and Lovley, D.R. (1998).
Quinnone moieties act as electron acceptors in the reduction of humic substances by
humic-reducing microorganisms. Environ. Sci. Technol ., 32 , 2984-2989.
Senesi, N., Miano, T.M., Provenzano, M.R., and Brunetti, G. (1991). Characterization,
differentiation, and classification of humic substances by fluorescence spectroscopy.
Soil Sci ., 152 , 259-271.
Sharma, A. and Schulman, S.G. (1999). Introduction to Fluorescence Spectroscopy , New
York: John Wiley & Sons, 173 pp.
Siegel, D.A., Maritorena, S., Nelson, N.B., Behrenfield, M.J., and McClain, C.R. (2005).
Colored dissolved organic matter and its influence on the satellite-based characteriza-
tion of the ocean biosphere. Geophys. Res. Lett , 32 , L20605.
Silverstein, R.M., Bassler, G. C., and Morrill, T.C. (1974). Spectrometric Identification of
Organic Compounds , 3rd ed. New York: John Wiley & Sons.
Singer, P.C. (1994). Control of disinfection by-products in drinking water. J. Environ.
Engng. ASCE , 120 , 727-744.
Skoog, D.A. and West, D.M. (1982). Fundamentals of Analytical Chemistry , New York:
Saunders College, 859 pp.
Sleighter, R.L., Liu, Z., Xue, J., and Hatcher, P.G. (2010). Multivariate statistical approaches
for the characterization of dissolved organic matter analyzed by ultrahigh resolution
mass spectrometry. Environ. Sci. Technol ., 44 , 7576-7582.
Spencer R.G.M., Baker A., Ahad J.M.E., Cowie G.L., Ganeshram R., Upstill-Goddard
R.C., and Uher G. (2007a). Discriminatory classification of natural and anthropogenic
waters in two U.K. estuaries. Sci. Tot. Environ ., 373 , 305-323.
Spencer, R.G.M., Bolton, L., and Baker, A. (2007b). Freeze/thaw and pH effects of fresh-
water dissolved organic matter fluorescence and absorbance properties from a number
of UK locations. Water Res ., 41 , 2941-2950
Spencer, R.G.M., Aiken, G.R., Butler, K.D., Dornblaser, M.M., Striegl, R.G., and Hernes,
P.J. (2009). Utilizing chromophoric dissolved organic matter measurements to derive
export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case
study of the Yukon River, Alaska. Geophys. Res. Lett . 36 , L06401.
Stedmon, C.A., Markager, S., and Bro, R. (2003). Tracing dissolved organic matter in
aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem .,
82 , 239-254.
Stevenson, F.J. (1985). Geochemistry of soil humic substances. In G. Aiken, D. McKnight,
and R. Wershaw (Eds.), Humic Substances in Soil, Sediment, and Water: Geochemistry,
Isolation and Characterization (pp. 13-52). New York: John Wiley & Sons.
Search WWH ::




Custom Search