Geoscience Reference
In-Depth Information
An assessment of basin scale variability between 50°N and 50°S. Prog. Oceanogr .,
45 , 339-368.
Gurden, S.P., Westerhuis, J.A., Bro, R., and Smilde, A.K. (2001). A comparison of multi-
way regression and scaling methods. Chemometr. Intell. Lab. Syst ., 59 , 121-136.
Hall, G.J. and Kenny, J.E. (2007). Estuarine water classification using EEM spectroscopy
and PARAFAC-SIMCA. Anal. Chim. Acta , 581 , 118-124.
Hall, G.J., Clow, K.E., and Kenny, J.E. (2005). Estuarial fingerprinting through multidimen-
sional fluorescence and multivariate analysis. Environ. Sci. Technol ., 39 , 7560-7567.
Harshman, R.A. and Lundy, M.E. (1994). Parafac - parallel factor-analysis. Comput. Stat.
Data Anal ., 18 , 39-72.
Jaumot, J. and Tauler, R. (2010). MCR-BANDS: A user friendly MATLAB program for the
evaluation of rotation ambiguities in multivariate curve resolution. Chemometr. Intell.
Lab. Syst ., 103 , 96-107.
Jiang, F., Lee, F.S-C., Wang, X., and Dai, D. (2008). The application of excitation/emis-
sion matrix spectroscopy combined with multivariate analysis for the characterization
and source identification of dissolved organic matter in seawater of Bohai Sea, China.
Mar. Chem ., 110 , 109-119.
Kjeldahla, K. and Bro, R. (2010). Some common misunderstandings in chemometrics. J.
Chemometr ., 24 , 558-564.
Kowalczuk, P., Durako, M.J., Young, H., Kahn, A.E., Cooper, W.J., and Gonsior, M. (2009).
Characterization of dissolved organic matter fluorescence in the South Atlantic Bight
with use of PARAFAC model: Interannual variability. Mar. Chem ., 113 , 182-196.
Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy , 3rd ed. New York: Plenum
Press.
Lavine, B. and Workman, J. (2010). Chemometrics. Anal. Chem ., 82 , 4699-4711.
Lu, F., Chang, C-H., Lee, D.-J., He, P-J., Shao, L-M., and Su, A. (2009). Dissolved organic
matter with multi-peak fluorophores in landfill leachate. Chemosphere , 74 , 575-582.
Macalady, D.L. and Walton-Day, K. (2009). New light on a dark subject: On the use of
fluorescence data to deduce redox states of natural organic matter (NOM). Aquat. Sci .,
71 , 135-143.
Marhaba, T.F., Bengraine, K., Pu, Y., and Arago, J. (2003). Spectral fluorescence signatures
and partial least squares regression: Model to predict dissolved organic carbon in
water. J. Hazard. Mater ., 97 , 83-97.
Martens, H. and Næs, T. (1989). Multivariate Calibration . Chichester: Wiley & Sons.
McKean, J.W. (2004). Robust analysis of linear models. Stat. Sci ., 19 , 562-570.
Miano, T.M. and Senesi, N. (1992). Synchronous excitation fluorescence spectroscopy
applied to soil humic substances chemistry. Sci. Total Environ ., 117-118 , 41-51.
Miller, M.P. and McKnight, D.M. (2010). Comparison of seasonal changes in fluorescent
dissolved organic matter among aquatic lake and stream sites in the Green Lakes
Valley. J. Geophys. Res. Biogeosci ., 115 . G00F12, doi: 10.1029/2009jg000985.
Miller, M.P., McKnight, D.M., and Chapra, S.C. (2009a). Production of microbially-
derived fulvic acid from photolysis of quinone-containing extracellular products of
phytoplankton. Aquat. Sci ., 71 , 170-178.
Miller, M.P., McKnight, D.M., Chapra, S.C., and Williams, M.W. (2009b). A model of deg-
radation and production of three pools of dissolved organic matter in an alpine lake.
Limnol. Oceanogr ., 54 , 2213-2227.
Mladenov, N., Huntsman-Mapila, P., Wolski, P., Masarnba, W.R.L, and McKnight, D.M.
(2008). Dissolved organic matter accumulation, reactivity, and redox state in ground
water of a recharge wetland. Wetlands , 28 , 747-759.
Search WWH ::




Custom Search