Geoscience Reference
In-Depth Information
Stedmon C.A, Markager, S., Søndergaard, M., Vang, T., Laubel, A., Borch, N.H., and
Windelin, A. (2006). Dissolved organic matter (DOM) export to a temperate estuary:
Seasonal variations and implications of land use. Estuaries Coasts , 29 , 388-400.
Stevensen, F.J. (1982). Biochemistry of the Formation of Humic Substances . In F.J.
Stevensen (Ed.), Humus Chemistry (pp. 195-220). New York: John Wiley & Sons.
Strom, S.L., Benner, R., Ziegler, S., and Dagg, M.J. (1997). Planktonic grazers are a poten-
tially important source of marine dissolved organic carbon. Limnol. Oceanogr ., 42 ,
1364-1374.
Tipping, E., Woof, C., Rigg, E., Harrison, A.F., Ineson, P., Taylor, K., Benham, D., Poskitt,
J., Rowland, A.P., Bol, R., and Harkness, D.D. (1999). Climatic influences on the
leaching of dissolved organic matter from upland UK moorland soils, investigated by
a field manipulation experiment. Environ. Int ., 25 , 83-95.
Tranvik, L. and Kokalj, S. (1998). Decreased biodegradability of algal DOC due to interac-
tive effects of UV radiation and humic matter. Aquat. Microb. Ecol ., 14 , 301-307.
Tranvik, L.J. and Bertilsson, S. (2001). Contrasting effects of solar UV radiation on dis-
solved organic sources for bacterial growth. Ecol. Lett ., 4 , 458-463.
Tranvik, L.J., Downing, J., and Cotner, J. (2009). Lakes and reservoirs as regulators of car-
bon cycling and climate. Limnol. Oceanogr ., 54 (1), 2298-2314.
Urban-Rich, J., McCarty, J.T., and Shailer, M. (2004). Effects of food concentration and
diet on chromophoric dissolved organic matter accumulation and fluorescent compo-
sition during grazing experiments with the copepod, Calanus finmarchicus. . ICES J.
Mar. Sci ., 61 , 542-551.
Vähätalo, A.V. and Wetzel, R.G.. (2004). Photochemical and microbial decomposition of
chromophoric dissolved organic matter during long (months-years) exposures. Mar.
Chem ., 89 , 313-326.
Vähätalo, A.V. and Wetzel, R.G. (2008). Long-term photochemical and microbial decom-
position of wetland-derived dissolved organic matter with alteration of C-13: C-12
mass ratio. Limnol. Oceanogr ., 53 , 1387-1392.
Yamamoto, S. and Ishiwatari, R. (1989). A study of the formation mechanism of sedi-
mentary humic substances-II. Protein-based melanoidin model. Org. Geochem ., 14 ,
479-489.
Yamashita, Y. and Tanoue, E. (2003). Chemical characterization of protein-like fluoro-
phores in DOM in relation to aromatic amino acids. Mar. Chem ., 82 , 255-271.
Yamashita, Y. and Tanoue, E. (2004). In situ production of chromophoric dissolved organic
matter in coastal environments. Geophys. Res. Lett ., doi: 10.1029/2004GL019734.
Yamashita, Y. and Tanoue, E. (2008). Production of bio-refractory fluorescent dissolved
organic matter in the ocean interior. Nature Geosci ., 1, 579-582, doi:10.1038/
ngeo279.
Zsolnay, A. (2003). Dissolved organic matter: Artefacts, definitions, and functions.
Geoderma , 113 , 187-209.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F. (1999).
Differentiating with fluorescence spectroscopy the sources of dissolved organic mat-
ter in soils subjected to drying. Chemosphere , 38 , 45-50.
Search WWH ::




Custom Search