Geoscience Reference
In-Depth Information
Desiderio, R.A., Moore, C., Lantz, C., and Cowles, T.J. (1997). Multiple excitation fluo-
rometer for in situ oceanographic applications. Appl. Optics , 36 , 1289-1296.
Downing, B.D., Boss, E., Bergamaschi, B.A., Fleck, J.A., Lionberger, M.A., Ganju, N.K.,
Schoellhamer, H., and Fujii, R. (2009). Quantifying fluxes and characterizing compo-
sitional changes of dissolved organic matter in aquatic systems in situ using combined
acoustic and optical measurements. Limnol. Oceanogr. Methods , 7 , 119-131.
Drozdowska, V. (2007). The LIDAR investigation of the upper water layer fluorescence
spectra of the Baltic Sea. Eur. Phys. J. Special Topics , 144 , 141-145.
Ferrari, G.M. and Tassan, S. (1991). On the accuracy of determining light absorption
by “yellow substance” through measurements of induced fluorescence. Limnol.
Oceanogr ., 36 , 777-786.
Gardner, G.B., Chen, R.F., and Berry, A. (2005). High-resolution measurements of chro-
mophoric dissolved organic matter (CDOM) in the Neponset River Estuary, Boston
Harbor, MA. Mar. Chem ., 96 , 137-154.
Gee, Y., H.R. Gordon, and Voss, K.J. (1993). Simulation of inelastic scattering contribu-
tions to the irradiance field in the ocean: Variation in Fraunhofer line depths. Appl.
Optics , 32 , 4028-4036.
Geiskes, W.W.C., Kraay, G.W., and Tijssen, S.B. (1978). Chlorophylls and their degra-
dation products in the deep pigment maximum layer of the tropical north Atlantic.
Nether . J. Sea Res ., 12 (2), 195-204.
Green, S.A. and Blough, N.V. (1994). Optical absorption and fluorescence properties of
chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr ., 39 ,
1903-916.
Haltrin, V.I., Kattawar, G.W., and Weidemann, A.D. (1991). Modeling of elastic and
inelastic scattering effects in oceanic optics. In S. G. Ackleson and R. Frouin (Eds.),
Proceedings of Ocean Optics XIII Conference . SPIE 2963, 597-602.
Hawes S.K., Carder, K.L., and Harvey, G.R. (1992). Quantum fluorescence efficiencies
of fulvic and humic acids: Effects on ocean color and fluorometric detection. In
Proceedings of Ocean Optics XI Conference . SPIE 1750, 212-223
Herman, A.W. and Denman, K.L. (1976). Rapid underway profiling of chlorophyll with an
in situ fluorometer mounted on a batfish vehicle. Deep-Sea Res ., 24 , 385-397.
Heuermann, R., Loquay, K.D., and Reuter, R. (1995). A multi-wavelength in situ fluorom-
eter for hydrographic measurements. Adv. Remote Sens ., 3 , 71-77.
Hoge, F.E. (2005). Oceanic inherent optical properties: Proposed single laser lidar and
retrieval theory. Appl. Optics , 44 , 7483-7486.
Hoge, F.E. and Swift, R.N. (1981). Airborne simultaneous spectroscopic detection of laser-
induced water Raman backscatter and fluorescence from chlorophyll a and other nat-
urally occurring pigments. Appl. Optics , 20 , 3197-3205.
Hoge, F.E. and Swift, R.N. (1983). Airborne detection of oceanic turbidity cell struc-
ture using depth-resolved laser-induced water Raman backscatter. Appl. Optics , 22 ,
3778-3786.
Hoge, F.E., Vodacek, A., and Blough, N.V. (1993). Inherent optical properties of the ocean:
Retrieval of the absorption coefficient of chromophoric dissolved organic matter from
fluorescence measurements. Limnol. Oceanogr ., 38 , 1394-1402
Hoge, F. E., Vodacek, A., Swift, R.R., Yungel, J.K., and Blough, N. (1995). Inherent optical
properties of the ocean: Retrieval of the absorption coefficient of chromophoric dis-
solved organic matter from airborne laser spectral fluorescence measurements. App.
Optics , 34 , 7032-7038.
Search WWH ::




Custom Search