Geoscience Reference
In-Depth Information
porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-
Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy.
Mar. Chem ., 105 , 15-29.
Tzortziou, M., Neale, P.J., Osburn, C.L., Megonigal, J.P., Maie, N., and Jaffé, R. (2008).
Tidal marshes as a source of optically and chemically distinctive coloured dissolved
organic matter in the Chesapeake Bay. Limnol. Oceanogr ., 53 ,148-159.
Vasel, J.L. and Praet, E. (2002). On the use of fluorescence measurements to characterize
wastewater. Water Sci. Technol ., 45 (4-5), 109-116.
Waggot A. and Butcher H.V. (1976). Analysis of the organic carbon content of sewage
effluent: general and specific group analysis. Technical Report TR29. Swindon, UK:
Water Research Centre.
Walker, S.A., Amon, R.M.W., Stedmon, C., Duan, S., and Louchouarn, P. (2009). The
use of PARAFAC modeling to trace terrestrial dissolved organic matter and finger-
print water masses in coastal Canadian Arctic surface waters. J. Geophys. Res ., 114 ,
G00F06.
Wang, Z., Wu, Z., and Tang, S. (2009). Characterization of dissolved organic matter in a
submerged membrane bioreactor by using three-dimensional excitation and emission
matrix fluorescence spectroscopy, Water Res ., 43 (6), 1533-1540.
Westerhoff, P., Chen, W., and Esparza, M. (2001). Fluorescence analysis of a standard ful-
vic acid and tertiary treated wastewater. J. Environ. Qual ., 30 (6), 2037-2046.
White, W.B. and Brennan, E.S. (1989). Luminescence of speleothems due to fulvic acid and
other activators. In Proceedings of the 10th International Conference of Speleology ,
August 13-20, 1989, Budapest, pp. 212-214.
Wickland, K.., Neff, J.C., and Aiken, G.R. (2007). DOC in Alaskan boreal forests: sources,
chemical characteristics, and biodegradability. Ecosystems , 10 , 1323-1340.
Williams, C.J., Yamashita, Y., Wilson, H.F., Jaffé, R., and Xenopoulos, M.A. (2010).
Unraveling the role of land use and microbial activity in shaping dissolved organic
matter characteristics in stream ecosystems. Limnol. Oceanogr ., 55 , 1159-1171.
Wilson, H.F. and Xenopoulos, M.A. (2009). Effects of agricultural land use on the compo-
sition of fluvial dissolved organic matter. Nature Geosci , 2 , 37-41.
Wu, J., Pons, M.N., and Potier, O. (2006). Wastewater fingerprinting by UV-visible and
synchronous fluorescence spectroscopy. Water Sci. Technol ., 53 (4-5), 449-456.
Yamashita, Y. and Tanoue, E. (2008). Production of bio-refractory fluorescent dissolved
organic matter in the ocean interior. Nature Geosci ., 1 , 579-582.
Yamashita, Y., Cory, R.M., Nishioka, J., Kuma, K., Tanoue, E., and Jaffé, R. (2010).
Fluorescence characteristics of dissolved organic matter in the deep waters of
the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Res. PtII ,
doi:10.1016/j.dsr2.2010.02.016.
Yanga, X., Shanga, C., Lee, W., Westerhoff, P., and Fan, C. (2008). Correlations between
organic matter properties and DBP formation during chloramination. Water Res ., 42 ,
2329-2339.
Yu, G-H., He, P-J., and Shao, L-M. (2010). Novel insights into sludge dewaterability by
fluorescence excitation-emission matrix combined with parallel factor analysis. Water
Res ., 44 , 797-806.
Zepp, R.G. and Schlotzhauer, P.F. (1981). Comparison of photochemical behavior of var-
ious humic substances in water. 3. Spectroscopic properties of humic substances.
Chemosphere , 10 , 479-486.
Zimmerman, R.C. (2003). A biooptical model of irradiance distribution and photosynthesis
in seagrass canopies. Limnol. Oceanogr ., 48 , 568-585.
 
Search WWH ::




Custom Search