Geoscience Reference
In-Depth Information
Cory, R.M., McKnight, D.M., Chin, Y.P., Miller, P., and Jaros, C.L. (2007). Chemical
characteristics of fulvic acids from Arctic surface waters: Microbial contributions
and photochemical transformations. J. Geophys. Res . Biogeosci ., 112 , G04S51,
doi:10.1029/2006JG000343.
Cory, R.M., Miller, M.P., McKnight, D.M., Guerard, J.J., and Miller, P.L. (2010). Effect
of instrument-specific response on the analysis of fulvic acid fluorescence spectra.
Limnol. Oceanogr. Methods , 8 , 67-78.
Cumberland, S.A. and Baker, A. (2007). The freshwater dissolved organic matter fluores-
cence - total organic carbon relationship. Hydrol. Process ., 21 , 2093-2099.
Del Castillo, C. (2005). Remote sensing of organic matter in coastal waters. In R.L.
Miller, C.E. Del Castillo, and B.A. McKee (Eds.), Remote Sensing of Coastal Aquatic
Environments: Technologies, Techniques, and Applications (pp. 157-180). Dordrecht,
The Netherlands: Springer Science+Business Media.
Del Castillo, C.E. and Miller, R.L. (2008). On the use of ocean color remote sensing to
measure the transport of dissolved organic carbon by the Mississippi River Plume.
Remote Sens. Environ ., 112 (3), 836-844.
Del Vecchio, R. and Blough, N.V. (2004). On the origin of the optical properties of humic
substances. Environ. Sci. Technol ., 38 , 3885-3891.
Dienert, F. (1910). De la recherche des substances fluorescentes dans le controle de la ster-
ilisation des eaux. C. R. Hehd. Seanc. Acad. Sci. Paris , 150 (8), 487-488.
Donard, O.F.X., Lamotte, M., Belin, C., and Ewald, M. (1989). High sensitivity fluores-
cence spectroscopy of Mediterranean waters using a conventional or a pulsed laser
excitation source. Mar. Chem ., 27 , 117-136.
Duursma, E.K. (1974). The fluorescence of dissolved organic matter in the sea. In N.G.
Jerlov and E. Steemann Nielsen (Eds.), Optical Aspects of Oceanography (pp. 237-
256). New York: Academic Press.
Eaton, A.D., Clesceri, L.S., Rice, E.W., and Greenberg, A.E. (2005). Standard Methods
for the Examination of Water and Wastewaters (21st ed.). Washington, DC: American
Public Health Association, Water Environment Federation, and American Water
Works Association.
Elliott, S., Lead, J.R., and Baker, A. (2006). Characterisation of the fluorescence from
freshwater planktonic bacteria. Water Res ., 40 (10), 2075-2083.
Fellman, J.B., Hood, E., Edwards, R.T., and D'Amore, D.V. (2009a). Changes in the con-
centration, biodegradability, and fluorescent properties of dissolved organic matter
during stormflows in coastal temperate watersheds. J. Geophys. Res.Biogeosci ., 114 ,
G01021, doi:10.1029/2008JG000790.
Fellman, J.B., Hood, E., D'Amore, D.V., Edwards, R.T., and White, D. (2009b). Seasonal
changes in the chemical quality and biodegradability of dissolved organic matter exported
from soils to streams in coastal temperature watersheds. Biogeochemistry , 95 , 277-293.
Fellman, J.B., Hood, E., Edwards, R.T., and Jones, J.B. (2009c). Uptake of allochthonous
DOM from soil and salmon in coastal temperate rainforest streams. Ecosystems , 12 ,
747-759.
Fellman, J.B., Hood, E., and Spencer, R.G.M. (2010). Fluorescence spectroscopy opens
new windows into dissolved organic matter dynamics in freshwater ecosystems: A
review. Limnol. Oceanogr ., 55 , 2452-2462.
Fichot, C.G., and Miller, W.L. (2010). An approach to quantify depth-resolved marine pho-
tochemical fluxes using remote sensing: Application to carbon monoxide (CO) photo-
production. Remote Sens. Environ ., 114 , 1363-1377.
Search WWH ::




Custom Search