Geoscience Reference
In-Depth Information
Klemp JB, Wilhelmson RB (1978) Simulations of right- and left-moving storms produced
thunderstorm splitting. J Atmos Sci 35:1097-1110
Klemp JB, Wilhelmson RB, Ray PS (1981) Observed and numerically simulated structure of a
mature supercell thunderstorm. J Atmos Sci 20:1558-1580
Kumjian MR, Ryzhkov AV (2010) The impact of evaporation on polatimetric characteristics of
rain: theoretical model and practical implication. J Appl Meteor Climatol 49:1247-1267
Kumjian MR, Ryzhkov AV, Melnikov VM, Schuur TJ (2010) Rapid-scan super-resolution
observations of a cyclic supercell with a dual- polarization WSR-88D. Mon Wea Rev 138 :3762-
3785
Lamb H
(1932)
Hydrodynamics,
2nd edn.
Cambridge
University
Press/Dover
Publication,
New York, p 738
Lemon LR, Doswell III CA (1979) Severe thunderstorm evolution and meso-cyclone structure as
related to tornadogenesis. Mon Wea Rev 107:1184-1197
Leslie LM (1971) The development of concentrated vortices: a numerical study. J Fluid Mech
49:1-21
Lewis JM, Lakshmivarahan S (2008) Sasaki's pivotal contribution: calculus of variations applied
to weather map analysis. Mon Wea Rev 136:3553-3567
Lewis JM, Lakshmivarahan S, Dhall SK (2006) Dynamic data assimilation: a least squares
approach. Cambridge University Press, Cambridge, 654 pp
Li X, Srivastava RC (2001) An analytical solution for raindrop evaporation and its application to
radar rainfall measurement. J Appl Meteor 40:1607-1616
Lilly DK (1982) The development and maintenance of rotation in convective storms. In:
Bengtsson L, Lighthill J (eds) Intense atmospheric vortices, Springer, New York, pp 149-160
Lilly DK (1986) The structure, energetics and propergation of rotating convective storms. Part II:
helicity and storm stabilization. J Amer Meteor Soc 43:126-140
Markowski P, Richardson Y, Marquis J, Wurman J, Kosiba K, Robinson P, Dowell D, Rasmussen E,
Davies-Jones R (2012a) The pretornadic phase of the Goshen County, Wyoming, Supercell of 5
June 2009 intercepted by VORTEX2. Part I: evolution of kinematic and surface thermodynamic
fields. Mon Weather Rev 140:2887-2915
Markowski P, Richardson Y, Marquis J, Davies-Jones R, Wurman J, Kosiba K, Robinson P,
Rasmussen E, Dowell D (2012b) The pretornadic phase of the Goshen County, Wyoming,
Supercell of 5 June 2009 intercepted by VORTEX2. Part II: intensification of low-level rotation.
Mon Weather Rev 140:2916-2938
Noda A (2002) Numerical simulation of supercell tornadogenesis and its structure. (Document of
Science Dissertation in Japanese). Tokyo University, Tokyo, 93 pp
Noda A, Niino H (2005) Genesis and structure of a major tornado in numerically-simulated
supercell storm: Importance of vertical velocity in a gust front. SOLA Meteor Soc Jpn
1: 5-8
Noda A, Niino H (2010) A numerical investigation of a supercell tornado: genesis and vorticity
budget. J Meteo Soc Jpn 88:135-159
Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation. Academic, The
Netherlands, 954 pp
Sasaki Y (1955) A fundamental study of numerical prediction based on the variational principle. J
Meteo Soc Jpn 33:262-275
Sasaki Y (1958) An objective analysis based on the variational method. J Meteo Soc Jpn 36:77-88
Sasaki Y (1970) Some basic formalisms in numerical variational analysis. Mon Wea Rev 98:875-
883
Sasaki YK (1999) Tornado and hurricane: needs of accurate prediction and effective dissemination
of information (in Japanese). J Visualization Soc Jpn 19(74):187-192 (Sasaki Y has been
changed to Sasaki YK since 1974)
Sasaki YK (2009) Real challenge of data assimilation for tornadogenesis. In: Park SK, Liang Xu
(eds)
Data
assimilation for
atmospheric,
oceanic
and
hydrologic
applications,
Springer,
Berlin/Heidelberg, pp 97-126
Search WWH ::




Custom Search