Geoscience Reference
In-Depth Information
- the curve giving the liquefaction potential.
The latter is taken from [SEE 73]. The residual strength was measured by Castro
[CAS 89]. All the parameter values used in this study are assembled in Table 10.4.
Embankment
Lower
Upper
Material
e max
0.93
1.15
1.15
0.93
1
0.93
1.15
0.93
1
upstream:
0.663 and
downstream:
0.652
e in situ
0.571
0.76
0.76
0.29
0.571
0.76
0.652
0.5
e min
0.42
0.51
0.51
0.42
0.29
0.42
0.51
0.42
0.29
c (KPa)
0
0
0
0
0
0
0
0
0
φ crit ( o )
34
34
34
34
35
34
34
34
35
upstream:
26 and
downstream:
33
Su C (kPa)
104
33
33
103
104
33
33
103
G 1 (MPa)
381
382
360
298
727
360
418
208
761
K 1 (MPa)
781
924
1,010
1,041
1,700
968
1,109
524
1,478
C c
0.154 0.194 0.194
0.154
0.215
0.154 0.194 0.154 0.215
r
2.45
2.4
2.4
2.3
2.45
2.45
2.4
2.3
2.45
α
4
5.8
5.8
8
1.8
5.5
5.5
13
2
C 1
0.07
0.09
0.09
0.024
0.026
0.04
0.09
0.012
0.05
C 2
20
41
41
43
17
31
36
47
21
Table 10.4. Material parameters for the modeling of San Fernando embankment dams
10.6.7.6. Justification of the behavior of the lower dam during the 1952 earthquake
The construction of the San Fernando lower dam started in 1912; the upper dam
was built afterwards, in 1919. The “semi-hydraulic fill” technique was applied in
order to build the upper dam, which appears to be an improvement over the classical
hydraulic fill technique. In order to validate the constitutive model used in this
study, and to ascertain that the chosen parameter values do not correspond to a
pessimistic misrepresentation of the soil resistance leading to early failure, we have
 
Search WWH ::




Custom Search