Geoscience Reference
In-Depth Information
For
|
x
|
a
1
ω
j =1 Q exp {− k j a } cosh( k j x )
F osc ( x , z , t )
H
= exp
{
i
ω
t
}
2 + z
2
η 0 i
ω
+ P (exp
{
i (
ω
t + k 0 ( x
a ))
}
+ exp
{
i (
ω
t
k 0 ( x + a ))
}
) ,
(2.92)
For x
a
2
j =1 Q exp {− k j x } sinh( k j a )
F osc ( x , z , t )
H
= exp
{
i
ω
t
}
η 0 i
ω
+ P (
exp
{
i (
ω
t
k 0 ( x
a ))
}
+ exp
{
i (
ω
t
k 0 ( x + a ))
}
)
(2.93)
For x
a
2
j =1 Q exp { k j x } sinh( k j a )
F osc ( x , z , t )
H
= exp
{
i
ω
t
}
η
0 i
ω
+ P (exp
{
i (
ω
t + k 0 ( x
a ))
}−
exp
{
i (
ω
t + k 0 ( x + a ))
}
) ,
(2.94)
where
2 sinh( k 0 z )
ω
k 0 cosh( k 0 z )+
P =
k 0 cosh( k 0 )) ,
k 0 ((
ω
2
1) sinh( k 0 )
2 sin( k j z )
k j cos( k j z )+
ω
Q =
k j cos( k j )) .
k j ((
ω
2
1) sin( k j )
With knowledge of the velocity potential of the flow it is not difficult to obtain
expressions for the displacement of a free surface and for the velocity components:
|
|
For
x
a
1
j =1 Q exp {− k j a } cosh( k j x )
2
ξ osc ( x , t )=
η 0 exp
{
i
ω
t
}
2
ω
2 P (exp
+
η 0 ω
{
i (
ω
t + k 0 ( x
a ))
}
+ exp
{
i (
ω
t
k 0 ( x + a ))
}
) ,
(2.95)
For x
a
j =1 Q exp {− k j x } sinh( k j a )
η 0 e i ω
t 2
2
ξ osc ( x , t )=
ω
2 P (
+
η 0 ω
exp
{
i (
ω
t
k 0 ( x
a ))
}
+ exp
{
i (
ω
t
k 0 ( x + a ))
}
) ,
(2.96)
 
Search WWH ::




Custom Search