Geoscience Reference
In-Depth Information
The third difficulty is related to the fact that strong tsunami waves are capable
of changing the initial aspect of a coast, including the topography of the coastal
belt (erosion, demolition of buildings and destruction of vegetation). Thus, subse-
quent waves will interact with a coast, the properties of which (topography, irregu-
larities) were altered by the preceding wave. High-precision run-up simulation will
inevitably encounter the necessity of taking these effects into account.
References
Abe K. (1978): A dislocation model of the 1933 Sanriku earthquake consistent with tsunami waves.
J. Phys. Earth 26(4) 381-396
Abe K. (1979): Size of great earthquakes of 1837-1974 inferred from tsunami data. J. Geophys.
Res. 84 1561-1568
Aida I. (1969): Numerical experiments for the tsunami propagation the 1964 Niigata tsunami and
1968 Tokachi-Oki tsunami. Bull. Earthquake Res. Inst. Univ. Tokyo 47(4) 673-700
Aida I. (1974): Numerical computation of a tsunami based on a fault origin model of an earthquake.
J. Seismol. Soc. Jpn 27(2) 141-154
Battjes J. A. (1988): Surf-zone dynamics. Annn. Rev. Fluid Mech. 20 257-293
Carrier G. F., Wu T. T., Yeh H. (2003): Tsunami run-up and drawdown on a plane beach. J. Fluid
Mech. 475 449-461
Carrier G. F., Greenspan H. P. (1958): Water waves of finite amplitude on a sloping beach. J. Fluid
Mech. 4 97-109
Chanson H., Aoki S., Maruyama M. (2003): An experimental study of tsunami runup on dry and
wet horizontal coastlines. Science of Tsunami Hazards 20(5) 278-293
Choi B. H., Pelinovsky E., Kim K. O., Lee J. S. (2003): Simulation of the trans-oceanic tsunami
propagation due to the 1883 Krakatau volcanic eruption. Nat. Hazards Earth Sys. Sci. 3
321-332.
Choi B. H., Kim D. C., Pelinovsky E., Woo S. B. (2007): Three-dimensional simulation of tsunami
run-up around conical island. Coastal Engineering 54 618629
Choi B. H., Pelinovsky E., Kim D. C., Didenkulova I., Woo S. B. (2008): Two- and three-
dimensional computation of solitary wave runup on non-plane beach. Nonlin. Processes Geo-
phys. 15 489-502
Chubarov L. B., Fedotova Z. I. (2003): An Effective High Accuracy Method for Tsunami Run-up
Numerical Modeling. In: Submarine Landslides and Tsunamis. Book Series: NATO SCIENCE
SERIES: IV. Eds. Ahmet C. et al. Kluwer Dordrecht, pp. 203-216
Chubarov L. B., Shokin Yu. I., Gusiakov V. K. (1984): Numerical modeling of the 1973 Shikotan
(Nemuro-Oki) tsunami. Comput. Fluid. 122 123-132
Didenkulova I. I., Kurkin A. A., Pelinovsky E. N. (2007): Run-up of solitary waves on slopes with
different profiles. Izvestiya RAN, Atmos. Ocean. Phys. 43(3)
Fedotova Z. I. (2002): Substantiation of the numerical method for simulating the run-up of long
waves on a shore (in Russian). Comput. Technol. 7(5) 58-76
Gonzalez F. I., Bernard S. N., Milbern H. B., et al. (1987): The Pacific Tsunami Observation Pro-
gram (PacTOP), In: Proc. IUGG/IOC, Intern. Tsunami Symp. 3-19
Goto C., Ogawa Y., Shuto N., Imamura N. (1997): Numerical method of tsunami simulation with
the leap-frog scheme (IUGG/IOC Time Project), IOC Manual, UNESCO No 35
Gusyakov B. K., Chubarov L. B. (1982): Numerical simulation of the Shikotan (Nemuro-oki)
tsunami of June 17, 1973 (in Russian), In: Tsunami evolution from the source to the coast
run-up, pp. 16-24. Radio i svyaz', Moscow
Gusyakov B. K., Chubarov L. B. (1987): Numerical simulation of tsunami excitation and propaga-
tion in the coastal zone. Earth Phys. (in Russian) (1) 53-64
Search WWH ::




Custom Search