Geoscience Reference
In-Depth Information
( x , t )= η 0
π
d k ω
cos( kx )(
ω
sin(
ω
t )
p 0 sin( p 0 t )) X i ( k )
ξ
,
(3.59)
p 0 )
cosh( k )(
ω
2
0
where
+
p 0 = k tanh( k ) ,
X i ( k )=
d x exp
{
ikx
} η i ( x ) .
Expressions (3.57)-(3.59) contain under the integral sign dimensionless variables
(the asterisk '*' is omitted)
t = t g
H
1 / 2
k = Hk ,
,
H
g
1 / 2
(3.60)
( x , z , a , b , c )= 1
ω =
ω
,
H ( x , z , a , b , c ) ,
but the coefficients in front of the integrals are dimensional.
Numerical calculation of the flow velocity components has shown that in the fre-
quency range considered, immediately after oscillations of the ocean bottom are
'switched on', each point of the liquid starts performing harmonic oscillations with
an amplitude depending only on its coordinates,
u ( x , z , t )= u ( x , z ) cos(
w ( x , z , t )= w ( x , z ) cos(
ω
t ) ,
ω
t ) .
(3.61)
Substituting formulae (3.61) into expression (3.55) and subsequently averaging
over the period of oscillations, we obtain formulae for calculating the horizontal and
vertical components of the force field,
Φ x and
Φ z , respectively,
u ( x , z )
,
u ( x , z )
u ( x , z )
1
2
+ w ( x , z )
Φ x ( x , z )=
(3.62)
x
z
u ( x , z )
.
w ( x , z )
w ( x , z )
1
2
+ w ( x , z )
Φ z ( x , z )=
(3.63)
x
z
Functions u ( x , z ) and w ( x , z ) can be calculated from formulae (3.57) and (3.58)
at t = 0:
η 0 ω
π
d k sin( kx ) sinh( kz ) X i ( k )
cosh( k )
u ( x , z )=
,
(3.64)
0
w ( x , z )= η
ω
π
d k cos( kx ) cosh( kz ) X i ( k )
cosh( k )
0
.
(3.65)
0
As a result we arrive at the following expressions for the components of the force
field:
 
Search WWH ::




Custom Search