Geoscience Reference
In-Depth Information
At last for the derivative of the phase function the following relations are
correct:
χ
L i ( P )
χ
λ
x a ( P ,
)
x a ( P i ,
,
)
λ j ) =
λ
) L j (
)
(5.38)
∂σ z , a ( P i ,
∂σ z , a ( P i ,
λ
and with accounting for (5.9) after simple transformations we obtain:
1
χ
λ
χ
λ
x a ( P i ,
,
)
x a ( P i ,
,
)
)− 1
2
) =
D ( P i ,
χ
λ
χ ,
λ
χ ,
λ
χ
,
,
D ( P i ,
) x a ( P i ,
) d
∂σ z , a ( P i ,
λ
σ z , a ( P i ,
λ
)
−1
(5.39)
where
χ
λ
=
χ
λ
χ
λ
σ a , z ( P i ,
λ
D ( P i ,
,
)
b i (
,
)+2 c i (
,
) ln(
)) .
The derivative with respect to air temperature . A big quantity of values depends
on temperature. Begin from the photon free path and obtain the following for
it:
∆τ ( P 1 , P 2 ))
=
∆τ ( P 1 , P 2 ))
∂α P ( P i )
∂α P ( P i )
(
(
(5.40)
T ( P i )
T ( P i )
and for the volume coefficient of the molecular scattering:
∂σ P , m ( P )
L i ( P ) ∂σ P , m ( P i )
=
.
(5.41)
T ( P i )
T ( P i )
An important feature of calculating the derivatives with respect to temperature
isthenecessityofaccountingforthetemperaturedependenceintheformulaof
the recalculation of the volume extinction coefficients in terms of atmospheric
pressure (5.1). It is obtained as follows:
= α P ( P i ) 1
.
∂α P ( P i )
α z ( P i ) ∂α z ( P i )
1
T ( P i )
T ( P i ) +
(5.42)
T ( P i )
∂σ P , m ( P i )
|∂
The analogous relation is written for derivative
T ( P i ), and for the
aerosol scattering volume coefficient the following is obtained:
∂σ P , a ( P i )
= σ P , a ( P i )
T ( P i )
.
T ( P i )
Now the expression for the extinction coefficient is derived:
∂α z ( P i )
T ( P i ) = ∂σ z , m ( P i )
+ ∂κ z , m ( P i )
.
(5.43)
T ( P i )
T ( P i )
Search WWH ::




Custom Search