Geoscience Reference
In-Depth Information
A.7.3.2 Multidimensional Normal Distribution
The vector of random variables X= (X 1 ,
,X n ) has a multidimensional normal
2
2
n
distribution with expected values
ʼ 1, , ʼ n , variances
r
1 ; ... r
and correlation
coef
cients
ˁ ij for i
j from 1 to n (X
Normal(
ʼ
,
ʣ
)) if and only if their joint
*
density has the form
n det ðRÞ ð 1 = 2 Þ exp f
T R 1
f X x
ðÞ ¼½ ð
2
ð
1
=
2
Þð
x
ð
x
lÞg;
where
ʼ
is the vector of coordinates
ʼ i and
ʣ
is the matrix whose entry
ʣ ij for i
jis
2
n
the covariance
q ij r i r j and for i = j is the variance
r
.
A.7.3.3 Properties of the Multidimensional Normal Distribution
A T R
X
Normal
ðl;RÞ$
for any matrix A
;
ðÞ
AX
Normal
ð
A
if
A
Þ:
So,
A T A
X
Normal
ðl; RÞ
for
R ¼
;
for a square invertible matrix A
$
A 1
ð
X
Normal 0
ð ;
;
I
I denoting the identity matrix
;
and, in particular,
A T A
X
Normal
ðl; RÞ
for
R ¼
;
for a square invertible matrix A
;!
A 1 X is a vector of independent coordinates.
The Chi-Squared distribution is the distribution of the sum of squares of normal
distributions.
X
2
Z 2
i
X
@
n $
X
¼
for Z 1 ; ... ;
Z n i
:
i
:
d
:
Normal 0
ð :
;
1
n
2
n
@
If X
, then EX = n,
so that,
X
and X
2
X 2
if X 1 ; ... ;
X n are i
:
i
:
d
:
Normal 0
; r
¼
i ;
then
n
2
E
ð
X
=r
Þ ¼
n
and
2
EX
ð
=
n
Þ ¼ r
:
It is easy to generalize this de
nition to:
2
n $
T R 1
Y
@
Y
¼ ð
X
ð
X
Search WWH ::




Custom Search