Geoscience Reference
In-Depth Information
β d = β/ K 2 +2 F
U s k 1 ,
Benjamin, T. B., and J. E. Feir (1967), The disintegration of
wave trains on deep water. Part I: Theory, J. Fluid Mech. , 27 ,
417-430.
Bretherton, F. (1964), Resonant interactions between waves. The
case of discrete oscillations, J. Fluid Mech. , 20 , 457-479.
Buzyna, G., R. L. Pfeffer, and R. Kung (1984), Transitions
to geostrophic turbulence in a rotating differentially heated
annulus of fluid, J. Fluid Mech. , 145 , 377-403.
Castrejon-Pita, A. A., and P. L. Read (2007), Baroclinic waves
in an air-filled thermally driven rotating annulus, Phys. Rev.
E , 75 , 026,301.
Charney, J. G. (1949), On a physical base for numerical predic-
tion of large-scale motions in the atmosphere, J. Meteor. , 6 ,
371-385.
Charney, J. G. (1971), Geostrophic turbulence, J.Atmos.Sci. , 28 ,
1087-1095.
Christiansen, B. (2000), Chaos, quasiperiodicity, and interan-
nual variability: Studies of a stratospheric vacillation model,
J. Atmos. Sci. , 57 (18), 3161-3173.
Eady, E. T. (1949), Long waves and cyclone waves, Tellus , 1 ,
33-52.
Feliks, Y., M. Ghil, and A. W. Robertson (2011), The atmo-
spheric circulation over the North Atlantic as induced
by the SST field, J. Clim. , 24 (2), 522-542, doi:10.1175/
2010JCLI3859.1.
Fjørtoft, R. (1953), On changes in the spectral distribution of
kinetic energy in two-dimensional, non-divergent flow, Tellus ,
5 , 225-230.
Flór, J.-B., H. Scolan, and J. Gula (2011), Frontal instabilities
and waves in a differentially rotating fluid, J. Fluid Mech. , 685 ,
532- 542.
Fowlis, W. W., and R. L. Pfeffer (1969), Characteristics of ampli-
tude vacillation in a rotating, differentially heated fluid annu-
lus determined by a multi-probe technique, J. Atmos. Sci. , 26 ,
100-108.
Früh, W.-G. (1996), Low-order models of wave interactions in
the transition to baroclinic chaos, Nonlin. Proc. Geophys. , 3 ,
150-165.
Früh, W.-G., and P. L. Read (1997), Wave interactions and the
transition to chaos of baroclinic waves in a thermally driven
rotating annulus, Phil. Trans. R. Soc. Lond. A , 355 , 101-153.
Früh, W.-G., and P. L. Read (1999), Experiments in a barotropic
rotating shear layer. I: Instability and steady vortices, J. Fluid
Mech. , 383 , 143-173.
Früh, W.-G., P. Maubert, P. Read, and A. Randriamampianina
(2007), DNS of structural vacillation in the transition to
geostrophic turbulence, in Advances in Turbulence XI ,edited
by J. M. L. M. Palma and A. Silva Lopes, No. 117 in Springer
Proceedings in Physics, pp. 432-434, Springer Verlag, Porto,
Portugal.
Guckenheimer, J., and G. Buzyna (1983), Dimension measure-
ments for geostrophic turbulence, Phys. Rev. Lett. , 51 , 1438-
1441.
Harlander, U., T. von Larcher, Y. Wang, and C. Egbers (2011),
PIV- and LDV-measurements of baroclinic wave interactions
in a thermally driven rotating annulus, Exp. Fluids , 51 (1),
37-49.
Hart, J. E. (1972), A laboratory study of baroclinic instability,
Geophys. Fluid Dyn. , 3 , 181-209.
v s = U d k 1 ,
v d = U d K 2
2 F / K 1 +2 F k 1 ,
γ s =16 k 1 /( 16 K 2 ) ,
γ d =16 k 1 k 1
2 F / 6 K 2 +2 F ,
γ b =32 Fk 1 / 3 π 2 +2 F .
(B.3)
The model by Lovegrove et al. [2002] consists of four
equations for the baroclinic wave of zonal and radial
mode numbers m and n = 1, respectively, in terms of
the cosine component C and sine componen S for the
barotropic and baroclinic vertical modes using subscript s
for sum or barotropic and d for difference or baroclinic, as
well as an equation for a single mean-low correction term,
A . The coupling between the standard model by Lovegrove
etal. [2002] and the boundary layer adds equations for the
temperature at the interface between the interior and the
Stewartson layer θ in the forms
C s =
s C s + β s S s
(v s + γ s A) S d ,
S s =
β s C s
s S s + (v s + γ s A) C d ,
(B.4)
C d =
(v s + γ d A) S s
d C d + β d S d ,
(B.5)
S d = (v s + γ d A) C s
β d C d
d S d ,
(B.6)
A = γ b S d C s
γ b C d S s
b A ,
(B.7)
b
δ A ,
θ =
(B.8)
b
δ
Pr) θ +
+ 1
1
Pr ( 1+ gS) .
(B.9)
Pr + v n exp (
While the effect of the waves on the interface temperature
is explicit, the reverse effect is implicit in the fact that the
forcing parameter as defined equation (B.1) depends on
the interface temperature.
REFERENCES
Ablowitz, M., and H. Segur (1981), Solitons and the Inverse
ScatteringTransform , SIAM Studies in Applied Mathematics,
SIAM, Philadelphia, Penna.
Azouni, A., E. W. Bolton, and F. H. Busse (1986), Experimental
study of convection columns in a rotating cylindrical annulus,
Geophys. Astrophys. Fluid Dyn. , 34 , 301-317.
Barcilon, V., and J. Pedlosky (1967), A unified linear theory of
homogeneous and stratified rotating fluids, J. Fluid Mech. , 29 ,
609-621.
Search WWH ::




Custom Search