Geoscience Reference
In-Depth Information
ocean models. It would be particularly valuable to perform
further experiments with strongly nonlinear flows, such
as the evolution of turbulent boundary currents [ Suther-
land land Cenedese , 2009], generation of geostrophic eddies
over the continental slope [ Pennel et al. , 2012], or the
nonlinear shelf waves considered here.
Acknowledgments. This research was supported by an
EPSRC DTA award to A. L. S. and by the Summer
Study Program in Geophysical Fluid Dynamics at Woods
Hole Oceanographic Institution, funded by NSF grant
OCE-0824636 and ONR grant N00014-09-10844. P. J.
D.'s research was supported by an EPSRC Advanced
Research Fellowship [grant number EP/E054625/1]. The
authors thank Jack Whitehead for granting them use of
the GFD laboratory at Woods Hole Oceanographic Insti-
tution and Anders Jensen for indispensible assistance and
advice in constructing and conducting the experiments
described herein.
Cenedese, C., and P. F. Linden (2002), Stability of a buoyancy-
driven coastal current at the shelf break, J. Fluid Mech. , 452 ,
97-121.
Cenedese, A., C. Vigarie, and E. V. Di Modrone (2005), Effects
of a topographic gradient on coastal current dynamics, J. Geo-
phys. Res. , 110 (C9), C09,009.
Clarke, S. R., and E. R. Johnson (1999), Finite-amplitude topo-
graphic Rossby waves in a channel, Phys. Fluids , 11 , 107-120.
Cohen, Y., N. Paldor, and J. Sommeria (2010), Laboratory exper-
iments and a non-harmonic theory for topographic Rossby
waves over a linearly sloping bottom on the f -plane, J. Fl u i d
Mech. , 645 (1), 479-496.
Cohen, Y., N. Paldor, and J. Sommeria (2012), Application of
laboratory experiments to assess the error introduced by the
imposition of “wall” boundary conditions in shelf models,
Ocean Modell. , 41 , 35-41.
Colin de Verdiere, A. (1979), Mean flow generation by topo-
graphic Rossby waves, J. Fl u i d Mech , 94 , 39-64.
Folkard, A. M., and P. A. Davies (2001), Laboratory studies of
the effects of interrupted, sloping topography on intermedi-
ate depth boundary currents in linearly stratified fluids, Dyn.
Atmos. Ocean. , 33 (4), 239-261.
Gill, A. E., and E. H. Schumann (1979), Topographically
induced changes in the structure of an inertial coastal jet:
Application to the Agulhas Current, J. Phys. Oceanogr. , 9 (5),
975-991.
Gordon, A. L. (1985), Indian-Atlantic transfer of thermo-
cline water at the Agulhas Retroflection, Science , 227 (4690),
1030-1033.
Gordon, A. L. (1986), Interocean exchange of thermocline
water, J. Geophys. Res , 91 (C4), 5037-5046.
Gresho, P. M. (1991a), Incompressible fluid dynamics: Some
fundamental formulation issues, Ann. Rev. Fluid Mech. , 23 ,
413-453.
Gresho, P. M. (1991b), Some current CFD issues relevant to the
incompressible Navier-Stokes equations, Comp. Meth. Appl.
Mech. Eng. , 87 , 201-252.
Haidvogel, D. B., et al. (2008), Ocean forecasting in terrain-
following coordinates: Formulation and skill assessment of
the Regional Ocean Modeling System, J. Comp. Phys. , 227 (7),
3595-3624.
Haynes, P. H., E. R. Johnson, and R. G. Hurst (1993), A sim-
ple model of Rossby-wave hydraulic behaviour, J. FluidMech. ,
253 , 359-384.
Hou, T. Y., and R. Li (2007), Computing nearly singular solu-
tions using pseudo-spectral methods, J. Comput. Phys. , 226 ,
379-397.
Ibbetson, A., and N. Phillips (1967), Some laboratory experi-
ments on Rossby waves in a rotating annulus, Tellus , 19 (1),
81-87.
Johns, W. E., and D. R. Watts (1986), Time scales and structure
of topographic Rossby waves and meanders in the deep Gulf
Stream, J. Mar. Res. , 44 (2), 267-290.
Johnson, E. (1987), Topographic waves in elliptical basins,
Geophy. Astrophys. Fluid , 37 (4), 279-295.
Johnson, E. R. (1985), Topographic waves and the evolution of
coastal currents, J. Fluid Mech. , 160 , 499-509.
Johnson, E. R., and S. R. Clarke (1999), Dispersive effects in
Rossby-wave hydraulics, J. Fluid Mech. , 401 , 27-54.
REFERENCES
Allen, J. S. (1980), Models of wind-driven currents on the conti-
nental shelf, Ann. Rev. Fluid Mech. , 12 (1), 389-433.
Arakawa, A. (1966), Computational design for long-term
numerical integration of the equations of fluid motion: Two-
dimensional incompressible flow. Part I, J. Comp. Phys. , 1 (1),
119-143.
Beal, L. M., T. K. Chereskin, Y. D. Lenn, and S. Elipot (2006),
The sources and mixing characteristics of the Agulhas Cur-
rent, J. Phys. Oceanogr. , 36 (11), 2060-2074.
Beal,L.M.,W.P.M.DeRuijter,A.Biastoch,andR.Zahn
(2011), On the role of the Agulhas system in ocean circulation
and climate, Nature , 472 (7344), 429-436.
Boyd, J. P. (2001), Chebyshev and Fourier Spectral Methods ,
Dover, Mineola, NY.
Brink, K. H. (1991), Coastal-trapped waves and wind-driven
currents over the continental shelf, Ann. Rev. Fluid Mech. ,
23 (1), 389-412.
Bryden, H. L., L. M. Beal, and L. M. Duncan (2005), Struc-
ture and transport of the Agulhas Current and its temporal
variability, J. Oceanogr. , 61 , 479-492.
Buchwald, V., and W. Melville (1977), Resonance of shelf waves
near islands, in Waves on Water of Variable Depth ,editedby
D. G. Provis and R. Radok, pp. 202-205, Springer, Berlin,
Heidelberg.
Buchwald, V. T., and J. K. Adams (1968), The propagation
of continental shelf waves, Proc. Roy. Soc. A , 305 (1481),
235-250.
Caldwell, D. R., and S. A. Eide (1976), Experiments on the res-
onance of long-period waves near islands, Proc.R.Soc.A ,
348 (1654), 359-378.
Caldwell, D. R., D. L. Cutchin, and M. S. Longuet-Higgins
(1972), Some model experiments on continental shelf waves,
J. Mar. Res. , 30 (1), 39-55.
Carnevale,G.F.,S.G.LlewellynSmith,F.Crisciani,R.Purini,
and R. Serravall (1999), Bifurcation of a coastal current at an
escarpment, J. Phys. Oceanogr. , 29 (5), 969-985.
 
Search WWH ::




Custom Search