Geoscience Reference
In-Depth Information
Karlsson K-G (1996) Cloud classifications with the SCANDIA model. SMHI reports meteorology
and climatology, no. 67
Kautsky N, Kautsky H, Kautsky U, Waern M (1986) Decreased depth penetration of Fucus vesicu-
losus (L.) since the 1940's indicate eutrophication of the Baltic Sea. Marine Ecology Progress
Series 28:1-8
Kirk JTO (2010) Light and photosynthesis in aquatic ecosystems, 3rd edn. Cambridge University
Press, Cambridge, 649pp
Kononen K, Leppänen J-M (1997) Patchiness, scales and controlling mechanisms of cyanobacte-
rial blooms in the Baltic Sea: application of a multiscale research strategy. In: Kahru M, Brown
CW (eds) Monitoring algal blooms. New techniques for detecting large-scale environmental
change. Springer, Berlin, Heidelberg, New York, pp 63-84
Kowalczuk P, Stedmon CA, Markager S (2006) Modelling absorption by CDOM in the Baltic Sea
from season, salinity and chlorophyll. Marine Chemistry 101:1-11
Kratzer S (2000) Bio-optical properties of coastal waters. PhD thesis, School of Ocean Sciences,
University of Wales Bangor, UK
Kratzer S, Håkansson B, Sahlin C (2003) Assessing Secchi and photic zone depth in the Baltic Sea
from Space. Ambio 32(8):577-585
Kratzer S, Brockmann C, Moore G (2008) Using MERIS full resolution data (300 m spatial res-
olution) to monitor coastal waters - a case study from Himmerfjärden, a fjord-like bay in the
north-western Baltic Sea. Remote Sensing of Environment 112(5):2284-2300
Kratzer S, Tett P (2009) Using bio-optics to investigate the extent of coastal waters - a Swedish
case study. Hydrobiologia 629:169-186
Kratzer K, Vinterhav C (2010) Improvement of MERIS data in Baltic Sea coastal areas by apply-
ing the Improved Contrast between Ocean and Land processor (ICOL). Oceanologia 52(2):
211-223
Kullenberg G (1981) Physical oceanography. In Voipio A (ed) The Baltic Sea. Elsevier
Oceanography Series 30, 418 pp. Elsevier, New York, NY
Kutser T, Metsamaa L, Strombeck N, Vahtmae E (2006) Monitoring cyanobacterial blooms by
satellite remote sensing. Estuarine, Coastal and Shelf Science 67(1-2):303-312
Kutser T, Metsamaa L, Vahtmäe E, Aps R (2007) Operative monitoring of the extent of dredging
plumes in coastal ecosystems using MODIS satellite imagery. Journal of Coastal Research
SI50:180-184
Lehmann A, Myrberg K (2008) Upwelling in the Baltic Sea - a review. Journal of Marine Systems
74:3-12
Leppänen J-M, Niemi A, Rinne I (1988) Nitrogen fixing of cyanobacteria (blue-green algae) and
the nitrogen cycle of the Baltic Sea. Symbiosis 6(1-2):181-194
Meier HEM, Kauker F (2003) Sensitivity of the Baltic Sea salinity to the freshwater supply.
Climate Research 24:231-242
Milliman JD (2001) Delivery and fate of fluvial water and sediment to the sea: a marine geologist's
view of European rivers. Scientia Marina 65(2):121-132
Moore G, Lavender S (2010) MERIS ATBD 2.6 - Case II.S Bright pixel atmospheric correction.
ESA Algorithm Theoretical Basis Documents, revision 6, Argans & Bio-Optika, UK
Morel A, Prieur L (1977) Analysis of variations in ocean colour . Limnology and Oceanography
22:709-722
Mueller JL (2000) SeaWiFS algorithm for the diffuse attenuation coefficient, K (490), using water-
leaving radiances at 490 and 555 nm. In: Hooker SB, Firestone ER (eds) SeaWiFS postlaunch
calibration and validation analyses, Part 3. NASA GSFC, Greenbelt, MD, pp 24-27
Ohde T, Siegel H, Gerth M (2007) Validation of MERIS Level-2 products in the Baltic Sea,
the Namibian coastal area and the Atlantic Ocean. International Journal of Remote Sensing
28(3&4):609-624
Pierson D, Kratzer S, Strömbeck N, Håkansson B (2008) Relationship between the attenuation of
downwelling irradiance at 490 nm with the attenuation of PAR (400 nm-700 nm) in the Baltic
Sea. Remote Sensing of Environment 112:668-680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Search WWH ::




Custom Search