Geoscience Reference
In-Depth Information
Neumeyer, J. (2010). Superconducting gravimetry. In G. Xu (Ed.), Sciences of geodesy—I. Berlin:
Springer.
NGA. (2002). Implementation of the World Geodetic System 1984 (WGS84) Reference Frame
G1150. US National Geospatial-Intelligence Agency, Addendum to NIMA TR 8350.2.
NIMA. (1989). The Universal Grids: Universal Transverse Mercator (UTM) and Universal Polar
Stereographic (UPS) (1st ed.). TM 8358.2, US National Imagery and Mapping Agency,
Washington, DC.
NIMA. (1990). Datums, ellipsoids, grids, and grid reference systems (1st ed.). TM 8358.1, US
National Imagery and Mapping Agency, Washington, DC.
NIMA. (2000). Department of Defense World Geodetic System 1984: its definition and relation-
ships with local geodetic systems (3rd ed.). US National Imagery and Mapping Agency
Technical Report 8350.2.
Nin, J., Liu, J., Chen, J., et al. (2006). Theories and technologies of modern geodesy. Wuhan:
Wuhan University Press (in Chinese).
Ning, J. (2002). Modern geodetic reference system. Acta Geodaetica et Cartographica Sinica, 31,
7-11 (in Chinese).
Ning, J., Chen, J., Li, d., Liu, J., & Zhang, Z. (2004). Introduction of surveying and mapping.
Wuhan: Wuhan University Press. 283pp (in Chinese). ISBN 7307043807.
Office of the Surveyor-General. (2007). Standard for New Zealand geodetic datum 2000. Land
Information New Zealand.
Pail, R., Bruinsma, S., Migliaccio, F., F¨rste, C., Goiginger, H., Schuh, W., et al. (2011). First
GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85,
819-843.
Paragi, Z., Reynolds, C., Biggs, A. D., Imai, H., & Garrett, M. A. (2005). The European VLBI
network: Operations, reliability and performance, future directions in high resolution astron-
omy. In J. Romney, M. Reid (Eds.), The 10th Anniversary of the VLBA, ASP Conference
Proceedings (Vol. 340, p. 611). San Francisco: Astronomical Society of the Pacific.
Pearlman, M. R., Degnan, J. J., & Bosworth, J. M. (2002). The international laser ranging service.
Advances in Space Research, 30, 135-143.
Pent, G., & Luzum, B. (Eds.). (2010). IERS conventions 2010 (IERS Technical Note No. 36).
Frankfurt: Verlag des Bundesamts f¨r Kartographie und Geod¨sie. ISBN 3-89888-989-6,
179pp.
Petit G. (2000) Importance of a common framework for realization of space-time reference
systems. In R. Rummel, H. Drewes, & W. Bosch, H. Hornik (Eds.) Towards an integrated
global geodetic observing system (IAG Symposium, Vol. 120, pp. 3-7). IAG Symposia,
Munich, October 1998.
Petrov, L., Gordon, D., Gipson, J., MacMillan, D., Ma, C., Fomalont, E., et al. (2009). Precise
geodesy with the very long baseline array. Journal of Geodesy, 83(9), 859-876.
Plag, H. P., & Pearlman, M. (Eds.). (2009). Global geodetic observing system—Meeting the
requirements of a global society on a changing planet in 2020. Berlin: Springer. ISBN
978-3-642-02686-7.
Ray, J., Dong, D., & Altamimi, Z. (2004). IGS reference frames: status and future improvements.
GPS Solutions, 8, 4. doi: 10.1007/s10291-004-0110-x .
Redfearn, J. C. B. (1948). Transverse Mercator formulae. Survey Review, 9(69), 318-322.
Reinking, J. (2010). Marine geodesy. In G. Xu (Ed.), Sciences of geodesy—I (pp. 275-299).
Heidelberg: Springer. ISBN 3642117406.
Reinking, J., Smit-Philipp, H., & Even-Tzur, G. (2011). Surface deformation along the Carmel
Fault System, Israel. Journal of Geodynamics, 52, 321-331.
Reiterer, A., Egly, U., Henert, M., & Riedel, B. (Eds.) (2010). Application of artificial intelligence
and innovations in engineering geodesy. Second international workshop (AIEG 2010), Braun-
schweig, Germany, ISBN 978-3-9501492-6-5.
Search WWH ::




Custom Search