Geoscience Reference
In-Depth Information
c
V cos B
c
V 3
2
0
1
3
dn 1
dq
c
V 2
1
V ʷ
c
V sin B
4
@
A cos B
5
2 t
2
4
3
5 V 2 cos B
2
4
3
5 V 2 cos B
c
V 3
c
V 3
2
V 2
sin B
ʷ
sin B
c
V sin B cos B
N sin B cos B
:
Inserting into the third equation in ( 6.22 ) gives:
N
2 sin B cos B
m 2
:
ð
6
:
25
Þ
Taking derivatives in turn from m 2, and substituting correspondingly into ( 6.22 ),
we get n 3 , m 4 , n 5 ...
as:
9
=
N
6 cos 3 B 1
t 2
2
n 3
þ ʷ
N
24 sin B cos 3 B 5
t 2
2
m 4
þ
9
ʷ
:
ð
6
:
26
Þ
;
N
120 cos 5 B 5
18t 2
t 4
n 5
þ
2 l 5
and l 6 or higher orders, produces the formula for the direct solution of the Gauss
projection:
Substituting ( 6.24 ), ( 6.25 ), and ( 6.26 ) into ( 6.23 ) and neglecting terms like
ʷ
9
=
;
l 00 4
N
N
24
ρ 00 2 sinB cos Bl 00 2
ρ 00 4 sinB cos 3 B 5
t 2
2
x
X
þ
þ
þ
9
ʷ
2
,
l 00 3
ρ 00 5 cos 5 B 5 18t 2
t 4 l 00 5
N
ρ 00
N
N
120
cos Bl 00 þ
ρ 00 3 cos 3 B 1
t 2
2
y
þ ʷ
þ
þ
6
ð
6
:
27
Þ
206264.80625 00 . l 00 (unit: second) is the difference between the longi-
tude of point P on the ellipsoid and that of the central meridian. l is positive when
point P is east of the central meridian, and negative when P is west of the central
meridian. B is the geodetic latitude of P. X is the length of the meridian arc from the
equator to point of latitude B. Given the geodetic coordinates (L, B) of point P (the
ρ 00
where
Search WWH ::




Custom Search