Geoscience Reference
In-Depth Information
Table 5.10 Sample computation for the direct solution of the geodetic problem
Given data
Ellipsoidal parameters
Computational results
90 00 0 00.11 00
215 59 0 04.333 00
L 1
Krassowski Ellipsoid
L 2
35 00 0 00.22 00
30 29 0 20.964 00
B 1
B 2
100 00 0 00.33 00
290 32 0 53.389 00
A 1
A 2
215 59 0 13.059 00
S
15 000 000.2 m
GRS75 Ellipsoid
L 2
30 29 0 23.867 00
B 2
290 32 0 48.833 00
A 2
215 59 0 13.306 00
GRS80 Ellipsoid
L 2
30 29 0 23.947 00
A 2 ᄐ 290 32 0 48.708 00
B 2
Applying the cosine theorem to the triangle P 0 1 P 0 2 N 0 in Fig. 5.43 gives (l is used
to approximately replace
ʻ
, and hence the
˃
obtained is an estimated value
˃ 0 ):
cos
˃ 0
sin u 1 sin u 2 þ
cos u 1 cos u 2 cos l
:
ð
5
:
103
Þ
From triangles P 0 1 P 0 2 Q 1 and P 0 1 P 0 2 N 0 , one obtains:
sin l
sin
sin m 0
cos u 1 sin A 1
cos u 1 cos u 2
˃ 0 :
ð
5
:
104
Þ
The approximate estimated value m 0 of m is hereby obtained.
With ( 5.92 ), we take the approximate correction for
ʻ
:
0
ʔʻ ᄐ ʻ
l
ʱ
˃ 0 sin m 0
0
:
003351
˃ 0 sin m 0 :
ð
5
:
105
Þ
Hence, we have:
ʻ 0
l
þ ʔʻ:
Taking ( 5.103 ) and differentiating
˃
and l results in:
sin
˃ 0 ʔ˃ ᄐ
cos u 1 cos u 2 sin
ʻ 0 ʔʻ
,
Or
sin
ʻ 0
ʔ˃ ᄐ
cos u 1 cos u 2
˃ 0 ʔʻ ᄐ
sin m 0 ʔʻ:
ð
5
:
106
Þ
sin
Hence, the result is:
˃ 1 ᄐ ˃ 0 þ ʔ˃:
Substituting
ʻ 0 and
˃ 1 into ( 5.104 ) produces:
Search WWH ::




Custom Search