Geoscience Reference
In-Depth Information
USEPA: Nanotechnology white paper. EPA 100/B-07/001. 20460: Science Policy Council, US Environmental
Protection Agency, Washington, DF, 2007.
USEPA: 2010. http://www.clu-in.org/conf/tio/nano-iron 121410/ (accessed September 2011).
Uyusur, B., Darnault, C.J.G., Snee, P.T., Koken, E., Jacobson, A.R. & Wells, R.R.: Coupled effects of
solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the
vadose zone. J. Contam. Hydrol. 118 (2010), pp. 184-198.
Vikesland, P.J., Heathcock, A.M., Rebodos, R.L. & Makus, K.E.: Particle size and aggregation effects on
magnetite reactivity toward carbon tetrachloride. Environ. Sci. Technol. 41 (2007), pp. 5277-5283.
Virkutyte, J., Silanpää, M. & Latostenmaa, P.: Electrokinetic soil remediation - critical overview. Sci. Total
Environ. 289 (2002), pp. 97-121.
Wang C.-B. & Zhang, W.-X.: Synthesizing nanoscale iron particles for rapid and completedechlorination of
TCE and PCBs. Environ. Sci. Technol . 31 (1997), pp. 2154-2156.
Wang, H. & Roman, M.: Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-
macroioncomplexes for drug delivery applications. Biomacromolecules 12 (2011), pp. 1585-1593.
Waybrant, K.R., Blowes, D.W. & Ptacek, C.J.: Selection of reactive mixtures for use in permeable reactive
walls for treatment of mine drainage. Environ. Sci. Technol . 32 (1998), pp. 1972-1979.
Westall, J.C.: Reactions at the oxide-solution interface: chemical and electrostatic models. Geochemical
Processes at Mineral Surfaces. In: J. Davis & K.F. Hayes: Geochemical Processes at Mineral Surfaces
(ACS Symp. Ser. 323) , 1986, pp. 54-78.
Wilkin, R.T., Puls, R.W. & Sewell, G.W.: Long-term performance of permeable reactive barriers using
zero-valent iron: an evaluation at two sites. USEPA Environmental Research Brief, Cincinnati, 2002,
http://nepis.epa.gov/Exe/ZyNET.exe/30003TJ7.TXT?ZyActionD
=
ZyDocument&Client
=
EPA&Index
=
2000
+
Thru
+
2005&Docs
=
&Query
=
&Time
=
&EndTime
=
&SearchMethod
=
1&TocRestrict
=
nn&
Toc
=
&TocEntry
=
&QField
=
&QFieldYear
=
&QFieldMonth
=
&QFieldDay
=
&IntQFieldOp
=
0&Ext
QFieldOp
=
0&XmlQuery
=
&File
=
D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C0
0000006%5C30003TJ7.txt&User
=
ANONYMOUS&Password
=
anonymous&SortMethod
=
h%7C-&
MaximumDocuments
=
1&FuzzyDegree
=
0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display
=
p%7Cf&DefSeekPage
=
x&SearchBack
=
ZyActionL&Back
=
ZyActionS&BackDesc
=
Results%20page&
MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed May 2012).
Wilkin,
R.T.,
Puls,
R.W.
&
Sewell,
G.W.:
Long-term
performance
of
permeable
reactive
barri-
ers
using
zero-valent
iron:
geochemical
and
microbiological
effects. Ground Water 41
(2003),
pp. 493-503.
Wilkin, R.T., Acree, S.D., Ross, R.R., Lee, T.R. & Beak, D.G.: An in-situ permeable reactive barrier for
the treatment of arsenic in ground water. Presented at Geological Society of America Annual Conference ,
22-25 October, 2006, Philadelphia, PA, 2006.
Wilkin, R.T., Acree, S.D., Ross, R.R., Beak, D.G. & Lee T.R.: Performance of a zerovalent iron reactive
barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies. J. Contam. Hydrol .
106 (2009), pp. 1-14.
Xiong, Z., He, F., Zhao, D. & Barnett, M.O.: Immobilization of mercury in sediment using stabilized iron
sulfide nanoparticles. Water Res. 43 (2009), pp. 5171-5179.
Xu Y. & Zhang, W.X.: Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes.
Ind. Eng. Chem. Res . 39 (2000), pp. 2238-2244.
Yang, L., Donahoe, R.J. & Redwine, J.C.: In situ chemical fixation of arsenic-contaminated soils: an
experimental study. Sci. Total Environ. 387 (2007), pp. 28-41.
Younger, P.L., Banwart, S.A. & Hedin, R.S.: Minewater: hydrology, pollution and remediation . Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2002.
Yuan, C. & Chiang, T.-S.: The mechanisms of arsenic removal from soil by electrokinetic process coupled
with iron permeable reaction barrier. Chemosphere 67 (2007), pp. 1533-1542.
Yuan, C. & Chiang, T.-S.: Enhancement of electrokinetic remediation of arsenic spiked soil by chemical
reagents. J. Hazard. Mater. 152 (2008), pp. 309-315.
Zelmanov, G. & Semiat, R.: Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous
oxidation. Water Res . 42 (2008), pp. 492-498.
Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G.L., Lu, Y., Papadopoulos, K. & John, V.T.:
Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation
of trichloroethylene. Environ. Sci. Technol . 42 (2008), pp. 8871-8876.
Zhan, J., Sunkara, B., Le, L., John, V.T., He, J., McPherson, G.L., Piringer, G. & Lu, Y.: Multifunctional
colloidal particles for in situ remediation of chlorinated hydrocarbons. Environ. Sci. Technol. 43 (2009),
pp. 8616-8621.
 
 
 
 
 
 
 
 
Search WWH ::




Custom Search