Geoscience Reference
In-Depth Information
Egorova, E.M. & Revina, A.A.: Synthesis of metallic nanoparticles in reverse micelles in the pres-
ence of quercetin., Colloids and Surfaces A: Physicochemical and Engineering Aspects , 168 (2000),
pp. 87-96.
Elliott, D.W. & Zhang, W.: Field assessment of nanoscale bimetallic particles for groundwater treatment.
Environ. Sci. Technol . 35 (2001), pp. 4922-4926.
Environmental KTN: Priority technology area 9: In-situ land remediation. Environmental knowledge
transfer network business case 9 . Oxford, United Kingdom, 2008. http://www.environmental-ktn.com
(accessed May 2008).
Eweis, J.B., Ergas, S.J., Chang, D.P. & Schroeder, E.D.: Bioremediation principles . McGraw-Hill, Boston,
MA, 1998.
Fryar, A.E. & Schwartz, F.W.: Modeling the removal of metals from ground water by a reactive barrier:
experimental results, Water Resour. Res . 30 (1994), pp. 3455-3469.
García, E., Cortina, J.L., Farrán, A., de Pablo J. & Martí V.: Stabilization of zero valent nanoparticules onto
macroporous polymeric sorbents for removal of anionic contaminants. In: M. Cox (ed): Advances in ion
exchange for industry and research . SCI., London, UK, 2008, pp. 241-247.
Garrido-Ramirez, E.G., Theng, B.K.G. & Mora, M.L.: Clays and oxide minerals as catalysts and
nanocatalysys in Fenton-like reactions-areview. Appl. Clay Sci. 47 (2010), pp. 182-192.
Gavaskar, A.R., Gupta, B.M., Janosy, R.J. & O'Sullivan, D.: Permeable barriers for groundwater
remediation - design, construction, and monitoring, Batelle Press, Columbus, OH, 1998.
Gavaskar, A., Tatar, L. & Condit, W.: Cost and performance report: nanoscale zero-valent iron technolo-
gies for source remediation. Contract report CR-05-007-ENV , 93043-4370, Naval Facilities Engineering
Command, Engineering Service Center, Port Hueneme, CA, 2005.
Gorski, C.A., Nurmi, J.T., Tratnyek, P.G., Hofstetter, T.B. & Scherer, M.M.: Redox behavior of magnetite:
implications for contaminant reduction. Environ. Sci. Technol . 44 (2010), pp. 55-60.
Gotpagar, J., Grulke, E., Tsang, T. & Bhattacharyya, D.: Reductive dehalogenation of trichloroethylene using
zero valent iron, Environ. Progress 16 (1997), pp. 137-143.
Gu, B., Watson, D.B., Phillips, D.H. & Liang, L.: Performance evaluation of a permeable iron reactive
barrier used for treatment of radionuclides and other inorganic contaminants. EOS Trans. , Am. Geophys.
Union, Fall Meet . 80 (1999), F366.
Gubert, O., de Pablo, J., Cortina, J.L. & Ayora, C.: Chemical characterisation of natural organic substrates
for biological mitigation of acid mine drainage. Water Res . 38 (2004), pp. 4186-4196.
Guillham, R.W. & O'Hannesin, S.F.: Metal-catalyzed abiotic degradation of halogenated organic coum-
pounds. IAH Conference on Modern Trends in Hydrogeology , 10-13 May 1992, Hamilton, Ontario,
Canada, 1992, pp. 94-103.
Hammack, R.W., Edenborn, H.M. & Dvorak, D.H.: Treatment of water from an open-pit copper mine using
biogenic sulfide and limestone: a feasibility study. Water Res. 28 (1994), pp. 2321-2329.
Harter, T.: Groundwater quality and groundwater pollution . Publ. 8084, University of California, Division
of Agriculture and Natural Resources, Oakland, CA, 2003.
He, F., Zhang, M., Qian, T. & Zhao, D.: Transport of carboxymethyl cellulose stabilized iron nanoparticles
in porous media: column experiments and modeling. J. Colloid Interface Sci . 334 (2009), pp. 96-102.
Hécho, L.I., Tellier, S. & Astruc, M.: Industrial site soils contaminated with arsenic or chromium: evaluation
of the electrokinetic method. Environ. Technol . 19 (1998), pp. 1095-1102.
Henderson, A.D. & Demond, A.H.: Long-term performance of zero-valent iron permeable reactive barriers:
a critical review. Environ. Eng. Sci. 24 (2007), pp. 401-423.
Herbert, R.B., Benner, S.G. & Blowes, D.W.: Solid phase iron sulfur geochemistry of a reactive barrier for
treatment of mine drainage. Appl. Geochem . 15 (2000), pp. 1331-1343.
Hoch, L.B., Mack, E.J., Hydutsky, B.W., Hershman, J.M., Skluzacek, J.M. & Mallouk, T.E.: Carbothermal
synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent
chromium . Environ. Sci. Technol . 42 (2008), pp. 2600-2605.
Hristovski, K., Baumgardner, A. & Westerhoff, P.: Selecting metal oxide nanomaterials for arsenic removal
in fixed bed columns: from nanopowders to aggregated nanoparticle media. J. Hazard. Mat. 147(2007),
pp. 265-274.
Huang, C.-C., Lo, S.-L., Tsai, S.-M. & Lien, H.-L.: Catalytic hydrodechlorination of 1,2-dichloroethane
using copper nanoparticles under reduction conditions of sodium borohydride. J. Environ. Monit. 13
(2011), pp. 2406-2412.
Hydutsky, B.W., Mack, E.J., Bekerman, B.B., Skluzacek, J.M. & Mallouk, T.E.: Optimization of nano-
and microiron transport through sand columns using polyelectrolyte mixtures. Environ. Sci. Technol. 41
(2007), pp. 6418-6424.
Search WWH ::




Custom Search