Geoscience Reference
In-Depth Information
Further to our case, the method can be applied for other case studies where the natural Fe
concentration is too low to adsorb all arsenic species. For example, the method can be applied for
sustainable drinking water production or the remediation of a contaminated site. Drinking water
production of course should not be done on a site contaminated with chemical warfare agents but
rather in regions with a naturally increased As concentration. In addition, it has been reported by
various groups that heavy metals can be adsorbed to Fe compounds (Ball and Nordstrom, 1991;
Buekers et al ., 2008; Dzombak and Morel, 1990; Gerth and Brümmer, 1983). This shows that
the application of this method is not only restricted to the removal of As from water.
ACKNOWLEDGEMENTS
These investigations were supported by the Federal Ministry of Defense (BMVg) and the Con-
struction Department of Lower Saxony - Federal Competence Centre for Soil and Groundwater
Protection. The authors also thank the two anonymous reviewers for valuable comments that
improved the quality of this article.
REFERENCES
Ball, J.W. & Nordstrom, D.K.: User's manual for WATEQ4F, with revised thermodynamic data base and
test cases for calculating speciation of major, trace, and redox elements in natural waters. US Geological
Survey Open File report 91-183. US Geological Survey, Menlo Park, CA, 1991.
Bissen, M. & Frimmel, F.H.: Arsenic — a review. Part II: oxidation of arsenic and its removal in water
treatment. Acta Hydrochim. Hydrobiol. 31:2 (2003), pp. 97-107.
Buekers, J., Amery, F., Maes, A. & Smolders, E.: Long-term reactions of Ni, Zn and Cd with iron oxyhy-
droxides depend on crystallinity and structure and on metal concentrations. Eur. J. Soil Sci . 59:4 (2008),
pp. 706-715.
Daus, B., Mattusch, J., Wennrich, R. & Weiss, H.: Analytical investigations of phenyl arsenicals in
groundwater. Talanta 75:2 (2008), pp. 376-379.
Dixit, S. & Hering, J.G.: Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals:
implications for arsenic mobility. Environ. Sci. Technol . 37:18 (2003), pp. 4182-4189.
Driehaus, W.: Arsenic removal - experience with the GEH® process in Germany. Water Sci. Technol. Water
Supply 2:2 (2002), pp. 275-280.
Driehaus, W., Jekel, M. & Hildebrandt, U.: Granular ferric hydroxide—a new adsorbent for the removal of
arsenic from natural water. J. Water Supply Res. Technol.-Aqua 47 (1998), pp. 30-35.
Dzombak, D.A. & Morel, F.M.M.: Surface complexation modeling hydrous ferric oxide . John Wiley & Sons
Inc, New York, NY, 1990.
Gerth, J. & Brümmer, G.: Adsorption und Festlegung von Nickel, Zink und Cadmium durch Goethit
(a-FeOOH). Fresen. J. Anal. Chem. 316:6 (1983), pp. 616-620.
Haas, R., Krippendorf, A., Schmidt, T., Steinbach, K. & von Löw, E.: Chemisch-analytische Untersuchung
von Arsenkampfstoffen und ihren Metaboliten. Umweltwissenschaften und Schadstoff-Forschung 10:5
(1998), pp. 289-293.
Henning, A.-K.: BiologischeMechanismen bei der unterirdischenAufbereitung vonGrundwasser amBeispiel
desMangans . Oldenbourg Industrieverlag GmbH, Stuttgarter Berichte zur Siedlungswasserwirtschaft 176,
Stuttgart, Germany, 2004.
Henriksson, J., Johannisson, A., Bergqvist, P.A. & Norrgren, L.: The toxicity of organoarsenic-based warfare
agents: in vitro and in vivo studies. Arch. Environ. Con. Tox. 30:2 (1996), pp. 213-219.
Hering, J.G., Chen, P.-Y., Wilkie, J.A., Elimelech, M. & Liang, S.: Arsenic removal by ferric chloride.
American Water Works Association, e-journal 88:4 (1996), pp. 155-167.
Holländer, H.M., Stummeyer, J., Harazim, B., Boochs, P.-W., Billib, M. & Krüger, T.: Subsurface treatment
of arsenic in groundwater - experiments at laboratory scale. In: J. Bundschuh, P. Armienta, P. Birkle,
P. Bhattacharya, J. Matschullat & A.B. Mukherjee (eds): Natural arsenic in groundwaters of LatinAmerica .
Taylor & Francis, London, UK, 2008, pp. 537-545.
Kauffmann, H.: Arsenelimination aus Grundwasser . PhD Thesis, University of Stuttgart, Stuttgart, Germany,
2008.
Search WWH ::




Custom Search