Geoscience Reference
In-Depth Information
under changed climate scenarios. Fully coupled GCM experiments with interactive
climate-vegetation and dust forcing will be useful to clarify possible feedback
processes, but such developments are just now in the beginning stages.
References
Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission inten-
sities and aerosol size distributions in source areas. J Geophys Res 106(D16):18075-18084
Alfaro SC, Gaudichet A, Gomes L, Maillé M (1997) Modeling the size distribution of a soil aerosol
produced by sandblasting. J Geophys Res 102(D10):11239-11249
Alfaro SC, Gaudichet A, Gomes L, Maillé M (1998) Mineral aerosol production by wind erosion:
aerosol particle sizes and binding energies. Geophys Res Lett 25(7):991-994
Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London, 265 pp
Balkanski Y, Schulz M, Claquin T, Guibert S (2007) Reevaluation of mineral aerosol radiative
forcings suggests a better agreement with satellite and AERONET data. Atmos Chem Phys
7:81-95
Balme M, Metzger S, Towner M, Ringrose T, Greeley R, Iversen J (2003) Friction wind speeds in
dust devils: a field study. Geophys Res Lett 30(16), 1830. doi: 10.1029/2003GL017493
Brindley H, Knippertz P, Ryder C, Ashpole I (2012) A critical evaluation of the ability of
the Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal infrared red-green-
blue rendering to identify dust events: theoretical analysis. J Geophys Res 117, D07201.
doi: 10.1029/2011JD017326
Coakley JA Jr, Cess RD (1985) Response of the NCAR community climate model to the radiative
forcing by the naturally occurring tropospheric aerosol. J Atmos Sci 42:1677-1692
Coe MT (1998) A linked global model of terrestrial hydrologic processes: simulation of modern
rivers, lakes, and wetlands. J Geophys Res 103(D8):8885-8899
Colarco P, da Silva A, Chin M, Diehl T (2010) Online simulations of global aerosol distributions
in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical
depth. J Geophys Res 115, D14207. doi: 10.1029/2009JD012820
Darmenova K, Sokolik IN (2007) Assessing uncertainties in dust emission in the Aral Sea region
caused by meteorological fields predicted with a mesoscale model. Global Planet Change 56(3-
4):297-310
Draxler RR, Ginoux P, Stein AF (2010) An empirically derived emission algorithm for wind-blown
dust. J Geophys Res 115, D16212. doi: 10.1029/2009JD013167
Fécan F, Marticorena B, Bergametti G (1999) Parametrization of the increase of the aeolian erosion
threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann Geophys
Atmos Hydrosph Space Sci 17(1):149-157
Gillette DA (1999) A qualitative geophysical explanation for “hot spot” dust emitting source
regions. Contrib Atmos Phys 72:67-77
Ginoux P, Chin M, Tegen I, Prospero JM, Holben B, Dubovik O, Lin S-J (2001) Sources
and distributions of dust aerosols simulated with the GOCART model. J Geophys Res
106(D17):20255-20273
Hagen LJ, Wagner LE, Skidmore EL (1999) Analytical solutions and sensitivity analyses for
sediment transport in WEPS. Trans ASAE 42(6):1715-1721
Haustein K, Pérez C, Baldasano JM, Jorba O, Basart S, Miller RL, Janjic Z, Black T, Nickovic S,
Todd MC, Washington R, Müller D, Tesche M, Weinzierl B, Esselborn M, Schladitz A (2012)
Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust
model - Part 2: experimental campaigns in Northern Africa. Atmos Chem Phys 12:2933-2958.
doi: 10.5194/acp-12-2933-2012
Search WWH ::




Custom Search