Environmental Engineering Reference
In-Depth Information
Padaeng zinc mine waste, Mae Sot District, Tak
Province, Thailand. In: Munir ozturk et al. (eds) Soil
remediation and plants. Elsevier. (in press)
Pusapukdepob J, Sawangwong P, Pulket C, Satraphat D,
Saowakontha S, Panutrakul S (2007) Health risk
assessment of villagers who live near a lead mining
area: a case study of Klity village, Kanchanaburi
province, Thailand. Southeast Asian J Trop Med
Public Health 38(1):168-177
Ram LC, Masto RE (2010) An appraisal of the potential
use of fl y ash for reclaiming coal mine spoil. J Environ
Manag 91:603-617
Rotkittikhun P, Kruatrachue M, Chaiyarat R,
Ngernsansaruay C, Pokethitiyook P, Paijitprapaporn
A, Baker AJM (2006) Uptake and accumulation of
lead by plants from the Bo Ngam lead mine area in
Thailand. Environ Pollut 144:681-688
Rotkittikhun P, Chaiyarat R, Kruatrachue M, Pokethitiyook
P, Baker AJM (2007) Growth and lead accumulation
by the grasses Vetiveria zizanioides and Thysanolaena
maxima in lead-contaminated soil amended with pig
manure and fertilizer: a glasshouse study. Chemosphere
66:45-53
Santibáñez C, Ginocchio R, Varnero MT (2007)
Evaluation of nitrate leaching from mine tailings
amended with biosolids under Mediterranean type
climate conditions. Soil Biol Biochem 39:1333-1340
Santibáñez C, Verdugo C, Ginocchio R (2008)
Phytostabilization of copper mine tailings with biosol-
ids: implications for metal uptake and productivity of
Lolium perenne . Sci Total Environ 395:1-10
Sharples JM, Meharg AA, Chambers SM, Cairney JWG
(1999) Arsenate sensitivity in ericoid and ectomycor-
rhizal fungi. Environ Toxicol Chem 18:1848-1855
Sharples JM, Meharg AA, Chambers SM, Cairney JWG
(2000a) Mechanism of arsenate resistance in the eri-
coid mycorrhizal fungus Hymenoscyphus ericae . Plant
Physiol 124:1327-1334
Sharples JM, Meharg AA, Chambers SM, Cairney JWG
(2000b) Evolution: symbiotic solution to arsenic con-
tamination. Nature 404:951-952
Simmons RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S
(2005) elevated levels of cadmium and zinc in paddy soils
and elevated levels of cadmium in rice grain downstream
of a zinc mineralized area in Thailand: implications for
public health. Environ Geochem Health 27:501-511
Siripornadulsil S, Siripornadulsil W (2013) Cadmium-
tolerant bacteria reduce the uptake of cadmium in rice:
potential for microbial bioremediation. Ecotoxicol
Environ Safe 94:94-103
Sneller FEC, van Heerwaarden LM, Kraaijeveldsmit FJL,
Ten Bookum WM, Koevoets PLM, Schat H, Verkleij
JAC (1999) Toxicity of arsenate in Silene vulgaris ,
accumulation and degradation of arsenate-induced
phytochelatins. New Phytol 144:223-232
Solís-Domínguez FA, Valentín-Vargas A, Chorover J,
Maier RM (2011) Effect of arbuscular mycorrhizal
fungi on plant biomass and the rhizosphere microbial
community structure of mesquite grown in acidic lead/
zinc mine tailings. Sci Total Environ 409:1009-1016
Soongsombat P, Kruatrachue M, Chaiyarat R, Pokethitiyook
P, Ngernsansaruay C (2009) Lead tolerance and
accumulation in Pteris vittata and Pityrogramma
calomelanos , and their potential for phytoremediation
of lead-contaminated soil. Int J Phytoremediat
11:396-412
Sridokchan W, Markich S, Visoottiviseth P (2005) Arsenic
tolerance, accumulation and elemental distribution in
twelve ferns: a screening study. Australas J Ecotoxicol
11:101-110
Stierle AA, Stierle DB (2013) Bioprospecting in the
Berkeley Pit: the use of signal transduction enzyme
inhibition assays to isolate bioactive secondary
metabolites from the extremophilic fungi of an acid
mine Waste Lake. Stud Nat Prod Chem 39:1-45
Stokes A, Sotir R, Chen W, Ghestem M (2010) Soil bio-
and eco-engineering in China: past experience and
future priorities. Ecol Eng 36:247-257
Sukyankij S, Panichpat T (2012) Comparison of sunfl ower
and sorghum in absorbing lead contaminated soil at
Klity village, Kanchanaburi province. The 9th National
Kasetsart University Kamphaeng saen Conference, 9,
pp 428-436
Surat W, Kruatrachue M, Pokethitiyook P, Tanhan P,
Samranwanich T (2008) Potential of Sonchus arvensis
for the phytoremediation of lead-contaminated soil.
Int J Phytoremediat 10(4):325-342
Swaddiwudhipong W, Limpatanachote P, Mahasakpan P,
Krintratun S, Punta B, Funkhiew T (2012) Progress in
cadmium-related health effects in persons with high
environmental exposure in northwestern Thailand: a
fi ve-year follow-up. Environ Res 112:194-198
Tamang B, Rockwood DL, Langholtz M, Maehr E, Becker
B, Segrest S (2008) Fast-growing trees for cogon grass
( Imperata cylindrica ) suppression and enhanced colo-
nization of understory plant species on a phosphate-
mine clay settling area. Ecol Eng 32:329-336
Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R
(2007) Uptake and accumulation of cadmium, lead
and zinc by Siam weed [ Chromolaena odorata (L.)
King & Robinson]. Chemosphere 68(2):323-329
Tanhan P, Pokethitiyook P, Kruatrachue M, Chaiyarat R,
Upatham S (2011) Effects of soil amendments and
EDTA on lead uptake by Chromolaena odorata :
greenhouse and fi eld trial experiments. Int J
Phytoremediat 13(9):897-911
Tanpibal V (1989) Characteristics and management of tin
mine tailings in Thailand. Soil Technol 2:17-26
The Nation (2013) Lead contamination: Klity villagers want
creek cleaned quickly. Kanchanaburi, March 30, 2013
Tlustoš P, Balík J, Pavlíková D, Száková J (1997) The
uptake of cadmium, zinc, arsenic and lead by chosen
crops. Rostl Výr 43:487-494
Truong P (2004) Vetiver grass technology for mine
tailings rehabilitation. In: Barker D, Watson A,
Sompatpanit S, Northcut B, Maglinao A (eds) Ground
and water bioengineering for erosion control and slope
stabilization. Science, Enfi eld, pp 379-389
Tu S, Ma LQ, MacDonald GE, Bondada B (2004)
Effects of arsenic species and phosphorus on arsenic
Search WWH ::




Custom Search