Environmental Engineering Reference
In-Depth Information
Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero
RV, Sparks DL (2007) Improved understanding of
hyperaccumulation yields commercial phytoextrac-
tion and phytomining technologies. J Environ Qual
36:1429-1433
Chaney RL, Centofanti T, Broadhurst CL (2010)
Phytoremediation of soil trace elements. In: Hooda PS
(ed) Trace elements in soils. Wiley, Chichester, p 352
Cherian S, Oliveira MM (2005) Transgenic plants in phy-
toremediation: recent advances and new possibilities.
Environ Sci Technol 39:9377-9390
Clemens S, Palmgren MG, Krämer U (2002) A long way
ahead: understanding and engineering plant metal
accumulation. Trends Plant Sci 7:309-315
Conesa HM, Evangelou MWH, Robinson BH, Schulin R
(2012) A critical view of current state of phytotech-
nologies to remediate soils: still a promising tool. Sci
World J. doi : 10.1100/2012/173829 , Article ID 173829
Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S
(2012) Biotechnological approaches for phytoremedi-
ation. In: Altman A, Hasegawa PM (eds) Plant bio-
technology and agriculture prospects for the 21st
century. Academic, MA, pp 309-328
Dickinson NM, Baker AJM, Doronila A, Laidlaw S,
Reeves RD (2009) Phytoremediation of inorganics:
realism and synergies. Int J Phytoremediat 11:97-114
GACGC (1994) World in transition: the threat to soils.
German Advisory Council on Global Change, Annual
report, Economica Verlag GmbH, Bonn, Germany
Gomes HI (2012) Phytoremediation for bioenergy: chal-
lenges and opportunities. Environ Technol Rev
1:59-66
Granel T, Robinson B, Mills T, Clothier B, Green S, Fung
L (2002) Cadmium accumulation by willow clones
used for soil conservation, stock fodder, and phytore-
mediation. Aust J Soil Res 40:1331-1337
Harris AT, Naidoo K, Nokes J, Walker T, Orton F (2009)
Indicative assessment of the feasibility of Ni and Au
phytomining in Australia. J Clean Prod 17:194-200
Heller MC, Keoleian GA, Volk TA (2003) Life cycle
assessment of a willow bioenergy cropping system.
Biomass Bioenergy 25:147-165
Hu Y, Nan Z, Su J, Wang N (2013) Heavy metal accumu-
lation by poplar in calcareous soil with various degrees
of multi-metal contamination: implications for phyto-
extraction and phytostabilization. Environ Sci Pollut
Res 20:7194-7203
Keller C, Hammer D (2004) Metal availability and soil
toxicity after repeated croppings of Thlaspi caerules-
cens in metal contaminated soils. Environ Pollut
131:243-254
Koh LP, Ghazoul J (2008) Biofuels, biodiversity, and peo-
ple: understanding the confl icts and fi nding opportuni-
ties. Biol Conserv 141:2450-2460
Krämer U (2010) Metal hyperaccumulation in plants.
Annu Rev Plant Biol 61:517-534
Leblanc M, Petit D, Deram A, Robinson BH, Brooks RR
(1999) The phytomining and environmental signifi -
cance of hyperaccumulation of thallium by Iberis
intermedia from southern France. Econ Geol
94:109-113
Letey J, Williams CF, Alemi M (2002) Salinity, drainage
and selenium problems in the Western San Joaquin
Valley of California. Irrig Drain Syst 16:253-259
Lewandowski I, Schmidt U, Londo M, Faaij A (2006) The
economic value of the phytoremediation function -
assessed by the example of cadmium remediation by
willow ( Salix ssp). Agric Syst 89:68-89
Li Y-M, Chaney R, Brewer E, Roseberg R, Angle JS,
Baker A, Reeves R, Nelkin J (2003a) Development of
a technology for commercial phytoextraction of
nickel: economic and technical considerations. Plant
Soil 249:107-115
Li Y-M, Chaney RL, Brewer EP, Angle JS, Nelkin J
(2003b) Phytoextraction of nickel and cobalt by
hyperaccumulator Alyssum species grown on nickel-
contaminated
soils.
Environ
Sci
Technol
37:1463-1468
Maxted AP, Black CR, West HM, Crout NMJ, McGrath
SP, Young SD (2007) Phytoextraction of cadmium and
zinc by Salix from soil historically amended with sew-
age sludge. Plant Soil 290:157-172
Meers E, Vandecasteele B, Ruttens A, Vangronsveld J,
Tack FMG (2007) Potential of fi ve willow species
( Salix spp.) for phytoextraction of heavy metals.
Environ Exp Bot 60:57-68
Milner MJ, Kochian LV (2008) Investigating heavy-metal
hyperaccumulation using Thlaspi caerulescens as a
model system. Ann Bot 102:3-13
Mirck J, Isebrands JG, Verwijst T, Ledin S (2005)
Development of short-rotation willow coppice sys-
tems for environmental purposes in Sweden. Biomass
Bioenergy 28:219-228
Morvan X, Saby NPA, Arrouays D, Le Bas C, Jones RJA,
Verheijen FGA, Bellamy PH, Stephens M, Kibblewhite
MG (2008) Soil monitoring in Europe: a review of
existing systems and requirements for harmonisation.
Sci Total Environ 391:1-12
Nicks LJ, Chambers MF (1998) A pioneering study of the
potential of phytomining for nickel. In: Brooks RR
(ed) Plants that hyperaccumulate heavy metals. CABI,
Wallingford, p 380
Ohlendorf HM, Hoffman DJ, Saiki MK, Aldrich TW
(1986) Embryonic mortality and abnormalities of
aquatic birds: apparent impacts of selenium from irri-
gation drainwater. Sci Total Environ 52:49-63
Pilon-smits E (2005) Phytoremediation. Annu Rev Plant
Biol 56:15-39
Pulford ID, Watson C (2003) Phytoremediation of heavy
metal-contaminated land by trees—a review. Environ
Int 29:529-540
Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman
JH, Gregg PEH, De Dominicis V (1997a) The nickel
hyperaccumulator plant Alyssum bertolonii as a poten-
tial agent for phytoremediation and phytomining of
nickel. J Geochem Explor 59:75-86
Robinson BH, Brooks RR, Howes AW, Kirkman JH,
Gregg PEH (1997b) The potential of the high-bio-
Search WWH ::




Custom Search