Environmental Engineering Reference
In-Depth Information
Table 2 Lipid contents and productivity of different
microalgae species
Lipid content
(% dry weight)
Porphyridium cruentum M 9-14
Prymnesium parvum M 22-38
Scenedesmus costatus F 11.9
Scenedesmus dimorphus F 16-40
Scenedesmus obliquus F 12-14
Scenedesmus quadricauda F 1.9-18.4
Schizochytrium sp. M 15-23
Skeletonema costatum M 13.5-51.3
Synechoccus sp. M 11
Tetraselmis suecica M 8.5-23.0
Thalassiosira pseudonana M 20.6
Source adapted from Rodolfi et al. ( 2009 ), Mata et al.
( 2010 ), Mutanda et al. ( 2011 ), and Bogen et al. ( 2013 )
Note: M/F indicates marine or freshwater species
Strains
M/F
Lipid content
(% dry weight)
M/F
Strains
Botryococcus braunii
F
25-75
Chaetoceros calcitrans
M
14.6-16.4
Chaetoceros muelleri
M
33.6
Characium californicum
F
16.1
Characium oviforme
F
13.3
Chlamydomonas rheinhardii
F
21
Chlorella emersonii
F
25-63
Chlorella luteo-viridis
F
12.2
Chlorella protothecoides
F
14.6-57.8
Chlorella sorokiniana
F
19-22
Chlorella vulgaris
F
14-22
Chloridella neglecta
F
23
Chloridella simplex
F
31.8
Chlorococcum
costazygoticum
F
20
extensive contamination. Another important
factor for consideration is water availability
(Mata et al. 2010 ). By growing marine micro-
algae, sea water can be used directly as an
alternative to fresh water (Amaro et al. 2011 ).
There are some disadvantages to using sea
water for the growth of microalgae; sea water
generally consists of marine flora that may
consume microalgae. For the growth of micro-
algae, a large amount of water is needed to
remove micro flora, or the filtering of sea
water will negatively impact on the economics
of production. Higher evaporation rates could
result in an increase in salinity, thus the neces-
sary adjustment of culture condition with
freshwater incurs an additional cost. Osmotic
shock and rupturing of cells under higher
salinity may not be suitable for lipid recovery
(Mata et al. 2010 ).
Chlorococcum infusionum
F
21.4
Coccomyxa chodati
F
21.9
Coelastrella striolata
F
15.2
Crypthecodinium cohnii
M
20.0-51.1
Cylindrotheca sp.
M
16-37
Ellipsoidion sp.
M
27.4
Euglena gracillis
F
14-20
Haematococcus pluvialis
F
25.0
Isochrysis galbana
M
7-40
Lobochlamys culleus
F
16.5
Lobochlamys segnis
F
20.0
Monallanthus salina
M
20-22
Monodus subterraneus
F
16
Monoraphidium arcuatum
F
23.4
Monoraphidium contortum
F
22.2
Monoraphidium dybowskii
F
19
Monoraphidium griffi thii
F
22.2
Monoraphidium neglectum
F
17.8
Monoraphidium terrestre
F
15.9
Monoraphidium tortile
F
31.5
Muriella aurantiaca
F
20.5
Nannochloris eucaryotum
M
18.4
4
Why Microalgae Are
Attractive
Nannochloris sp.
M
21.4
Nannochloropsis oculata
M
22.7-29.7
Navicula salinicola
F
24.7
Microalgae are easy to cultivate in an aquatic
medium and need less water than terrestrial
crops. They can be cultivated in seawater or
brackish water on non-arable land. Microalgae
have a high growth rate, a short life cycle, and
can be harvested continuously (Chisti 2007 ;
Schenk et al. 2008 ). Microalgae double their
Neochloris oleoabundans
F
29-65
Nitzschia sp.
M
16-47
Parachlorella kessleri
F
22.8
Pavlova lutheri
M
35.5
Pavlova salina
M
30.9
Phaeodactylum tricornutum
M
18-57
Pleurastrum insigne
F
23.4
 
Search WWH ::




Custom Search