Biomedical Engineering Reference
In-Depth Information
Acknowledgments Financial support from NSF CAREER (0546165), National Institutes of
Health (GM079613), University of Missouri Research Board and Startup Fund. The author's
work was conducted in a facility constructed with support from Research Facilities Improvement
Program Grant C06-RR-016489-01 from the National Center for Research Resources, National
Institutes of Health.
References
1. Alberti, P. & Mergny, J.L. (2003) DNA duplex-quadruplex exchange as the basis for a
nanomolecular machine Proceedings of the National Academy of Sciences of the United
States of America 100:1569-1573.
2. Arthanari, H. & Bolton, P.H. (2001) Functional and dysfunctional roles of quadruplex DNA
in cells Chemistry & Biology 8:221-230.
3. Ashkenasy, N., Sanchez-Quesada, J., Bayley, H. & Ghadiri, M.R. (2005) Recognizing a
single base in an individual DNA strand: A step toward DNA sequencing in nanopores
Angewandte Chemie-International Edition 44:1401-1404.
4. Baskerville, S., Zapp, M. & Ellington, A.D. (1999) Anti-Rex aptamers as mimics of the
Rex-binding element Journal of Virology 73:4962-4971.
5. Bayley, H. &Cremer, P.S. (2001) Stochastic sensors inspired by biology Nature 413:226-230.
6. Bayley, H. et al. (2008) Droplet interface bilayers Mol. Biosyst. 4:1191-1208.
7. Bayley, H. & Jayasinghe, L. (2004) Functional engineered channels and pores - (Review)
Molecular Membrane Biology 21:209-220.
8. Bezrukov, S.M., Vodyanoy, I. & Parsegian, V.A. (1994) Counting polymers moving through
a single ion channel Nature 370:279-281.
9. Bock, C. et al. (2004) Photoaptamer arrays applied to multiplexed proteomic analysis Prote-
omics 4:609-618.
10. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. & Toole, J.J. (1992) Selection of
Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin Nature
355:564-566.
11. Braha, O., Gu, L.Q., Zhou, L., Lu, X.F., Cheley, S. & Bayley, H. (2000) Simultaneous
stochastic sensing of divalent metal ions Nature Biotechnology 18:1005-1007.
12. Breaker, R.R. (2004) Natural and engineered nucleic acids as tools to explore biology Nature
432:838-845.
13. Brody, E.N., Willis, M.C., Smith, J.D., Jayasena, S., Zichi, D. & Gold, L. (1999) The use of
aptamers in large arrays for molecular diagnostics Molecular Diagnosis 4:381-388.
14. Bruno, J.G. & Kiel, J.L. (1999) In vitro selection of DNA aptamers to anthrax spores with
electrochemiluminescence detection Biosensors & Bioelectronics 14:457-464.
15. Cheley, S., Gu, L.Q. & Bayley, H. (2002) Stochastic sensing of nanomolar inositol
1,4,5-trisphosphate with an engineered pore Chem. Biol. 9:829-838.
16. Chou, S.H., Chin, K.H. & Wang, A.H.J. (2005) DNA aptamers as potential anti-HIV agents
Trends in Biochemical Sciences 30:231-234.
17. Cornell, B.A. et al. (1997) A biosensor that uses ion-channel switches Nature 387:580-583.
18. Costello, R.F., Peterson, I.P., Heptinstall, J., Byrne, N.G. & Miller, L.S. (1998) A robust
gel-bilayer channel biosensor Advanced Materials for Optics and Electronics 8:47-52.
19. Davis, J.T. & Spada, G.P. (2007) Supramolecular architectures generated by self-assembly of
guanosine derivatives Chemical Society Reviews 36:296-313.
20. de Soultrait, V.R., Lozach, P.Y., Altmeyer, R., Tarrago-Litvak, L., Litvak, S. & Andreola, M.
L. (2002) DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase
agents Journal of Molecular Biology 324:195-203.
Search WWH ::




Custom Search