Biomedical Engineering Reference
In-Depth Information
56. Lubensky, D. K., & Nelson, D. R. (1999). Driven Polymer Translocation Through a Narrow
Pore. Biophysical Journal, 77 (4), 1824-1838.
57. Manning, G. S. (1993). A Condensed Counterion Theory for Polarization of Polyelectrolyte
Solutions in High Fields. Journal of Chemical Physics, 99 (1), 477-486.
58. Mathe, Jerome, Aksimentiev, Aleksei, Nelson, David R., Schulten, Klaus, & Meller, Amit
(2005). Orientation discrimination of single-stranded DNA inside the
-hemolysin mem-
brane channel. Proceedings of the National Academy of Sciences of the United States of
America, 102 (35), 12377-12382.
59. McNally, Ben, Wanunu, Meni, & Meller, Amit (2008). Electromechanical Unzipping of
Individual DNA Molecules Using Synthetic Sub-2 nm Pores. Nano Lett.
60. Meller, A., & Branton, D. (2002). Single molecule measurements of DNA transport through a
nanopore. Electrophoresis, 23 (16), 2583-2591.
61. Meller, A., Nivon, L., & Branton, D. (2001). Voltage-Driven DNA Translocations through a
Nanopore. Physical Review Letters, 86 (15), 3435.
62. Mitchell, Nick, & Howorka, Stefan (2008). Chemical Tags Facilitate the Sensing of Individ-
ual DNA Strands with Nanopores13. Angewandte Chemie International Edition, 47 (30),
5565-5568.
63. Moon, Jeong-Mi, Akin, Demir, Xuan, Yi, Ye, Peide, Guo, Peixuan, & Bashir, Rashid (2009).
Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina
membranes. Biomedical Microdevices, 11 (1), 135-142.
64. Nakane, J., Akeson, M., & Marziali, A. (2002). Evaluation of nanopores as candidates for
electronic analyte detection. Electrophoresis, 23 (16), 2592-2601.
65. Nam, Sung-Wook, Rooks, Michael J., Kim, Ki-Bum, & Rossnagel, Stephen M. (2009). Ionic
Field Effect Transistors with Sub-10 nmMultiple Nanopores. Nano Letters, 9 (5), 2044-2048.
66. Nilsson, J., Lee, J. R. I., Ratto, T. V., & LĀ“tant, S. E. (2006). Localized Functionalization
of Single Nanopores. Advanced Materials, 18 (4), 427-431.
67. O'Keeffe, M., & Stuart, J. A. (2002). Bond energies in solid oxides. Inorganic Chemistry,
22 (1), 177-179.
68. Parks, George A. (2002). The Isoelectric Points of Solid Oxides, Solid Hydroxides, and
Aqueous Hydroxo Complex Systems. Chemical Reviews, 65 (2), 177-198.
69. Peters, Reiner (2005). Translocation Through the Nuclear Pore Complex: Selectivity and
Speed by Reduction-of-Dimensionality. Traffic, 6 (5), 421-427.
70. Petrossian, L., Wilk, S. J., Joshi, P., Hihath, S., Goodnick, S. M., & Thornton, T. J. (2007).
Fabrication of Cylindrical Nanopores and Nanopore Arrays in Silicon-On-Insulator
Substrates. Journal of Microelectromechanical Systems, 16 (6), 1419-1428.
71. Pivin, Jean Claude (1983). An overview of ion sputtering physics and practical implications.
Journal of Materials Science, 18 (5), 1267-1290.
72. Salisbury, I. G., Timsit, R. S., Berger, S. D., & Humphreys, C. J. (1984). Nanometer scale
electron beam lithography in inorganic materials. Applied Physics Letters, 45 (12),
1289-1291.
73. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating
inhibitors. Proceedings of the National Academy of Sciences of the United States of America,
74 (12), 5463-5467.
74. Schenkel, T., Radmilovic, V., Stach, E. A., Park, S. J., & Persaud, A. (2003). Formation of a
few nanometer wide holes in membranes with a dual beam focused ion beam system. Journal
of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21 (6),
2720-2723.
75. Siwy, Z., Dobrev, D., Neumann, R., Trautmann, C., & Voss, K. (2003). Electro-responsive
asymmetric nanopores in polyimide with stable ion-current signal. Applied Physics
A: Materials Science & Processing, 76 (5), 781-785.
76. Siwy, Z., & Fulinski, A. (2004). A nanodevice for rectification and pumping ions. American
Journal of Physics, 72 (5), 567-574.
a
Search WWH ::




Custom Search