Biomedical Engineering Reference
In-Depth Information
stability of the biological membranes in the past, recent studies demonstrate that this
limitation could be overcome by using glass nanopore membrane or stable protein
pore chips. Furthermore, the resolution of nanopore stochastic sensing can be further
improved by using a pattern-recognition nanopore sensor array and with an organic
salt solution as the background electrolyte. The protein-pore based stochastic sensing
method is envisioned for further development as a high-throughput, portable tech-
nique for real-time, on-site analysis of chemical, biological, and explosive agents, as
well as compounds of environmental and biological importance.
References
1. Bayley, H.; Cremer, P. S. Stochastic sensors inspired by biology. Nature 2001, 413 , 226-230.
2. Schmidt, J. Stochastic sensors, J. Mater. Chem. 2005, 15 , 831-840.
3. Zhao, Q.; Jayawardhana, D. A.; Wang, D.; Guan, X. Study of peptide transport through
engineered protein channels. J. Phys. Chem. B 2009, 113 , 3572-3578.
4. Song, L.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J. E. Structure of
staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996, 274 , 1859-1866.
5. Conlan, S.; Zhang, Y.; Cheley, S.; Bayley, H. Biochemical and biophysical characterization of
OmpG: A monomeric porin. Biochemistry 2000, 39 , 11845-11854.
6. Miles, G.; Cheley, S.; Braha, O.; Bayley, H. The staphylococcal leukocidin bicomponent toxin
forms large ionic channels. Biochemistry 2001, 40 , 8514-8522.
7. Braha, O.; Gu, L.-Q.; Zhou, L.; Lu, X.; Cheley, S.; Bayley, H. Simultaneous stochastic sensing
of divalent metal ions. Nat. Biotechnol. 2000, 17 , 1005-1007.
8. Braha, O.; Walker, B.; Cheley, S.; Kasianowicz, J. J.; Song, L.; Gouaux, J. E.; Bayley, H.
Designed protein pores as components for biosensors. Chem. Biol. 1997, 4 , 497-505.
9. Cheley, S.; Gu, L.-Q.; Bayley, H. Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate
with an engineered pore. Chem. Biol. 2002, 9 , 829-838.
10. Gu, L.-Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H. Stochastic sensing of organic analytes
by a pore-forming protein containing a molecular adapter. Nature 1999, 398 , 686-690.
11. Shin, S.-H.; Luchian, T.; Cheley, S.; Braha, O.; Bayley, H. Kinetics of a reversible covalent-
bond-forming reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 2002,
41 , 3707-3709.
12. Kang, X. F.; Cheley, S.; Guan, X.; Bayley, H. Stochastic Detection of Enantiomers.
J. Am. Chem. Soc. 2006, 128, 10684-10685.
13. Guan, X.; Gu, L. Q.; Cheley, S.; Braha, O.; Bayley, H. Stochastic sensing of TNT with a
genetically engineered pore. ChemBioChem , 2005, 6 , 1875-1881.
14. Jayawardhana, D. A.; Crank, J. A.; Zhao, Q.; Armstrong, D. W.; Guan X. Nanopore stochastic
detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid
supporting electrolyte. Anal. Chem. 2009, 81 , 460-464.
15. Wang, D.; Zhao, Q.; Guan, X. Detection of nerve agent hydrolytes in an engineered nanopore.
Sens. Actuators B Chem. 2009, 139 , 440-446.
16. Wu, H. C.; Bayley, H. Single-molecule detection of nitrogen mustards by covalent reaction
within a protein nanopore. J. Am. Chem. Soc. 2008, 130 , 6813-6819.
17. Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. Characterization of individual
polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U. S. A. 1996,
93 , 13770-13773.
18. Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton, D. Rapid nanopore discrimina-
tion between single polynucleotide molecules. Proc. Natl. Acad. Sci. U.S.A. 2000,
97 , 1079 - 1084.
Search WWH ::




Custom Search