Biomedical Engineering Reference
In-Depth Information
where [ K + ] 0 and [ Cl - ] 0 are the bulk ion concentration, and the virtual density of
states N K þ and N Cl are given by
ph 2
m K þ kT
2
m Cl kT
2
N K þ ¼
; N Cl ¼
:
(7.21)
2
2
ph 2
References
1. Kasianowicz, J.J., Brandin, E., Branton, D., Deamer, D.W., Characterization of individual
polynucleotide molecules using a membrane channel, PNAS 93, 13770-13773 (1996).
2. Saenger, W. 1984. Principles of Nucleic Acid Structure . Springer Verlag, New York.
3. Song, L., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., Gouaux, J.E., Structure of
staphylococcal alpha-hemolysin, a heptameric transmembrane pore, Science 274, 1859-1865
(1996).
4. Akenson, M., Branton, D., Kasianowicz, J.J., Brandin, E., Deamer, D.W., Microsecond
timescale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid
as homopolymers or as segments within single RNA molecules, Biophys. J. 77, 3227-3233
(1999).
5. Meller, A., Nivon, L., Brandin, E., Golovchenko, J., Branton, D., Rapid nanopore discrimina-
tion between single polynucleotide molecules, PNAS 97, 1079-1084 (2000).
6. Deamer, D.W., Akeson, M., Nanopores and nucleic acids: prospects for ultrarapid sequencing,
Trends in Biotech. 18, 147-151 (2000).
7. Vercoutere, W., Winters-Hilt, S., Olsen, H., Deamer, D., Haussler, D., Akeson, M., Rapid
discrimination among individual DNA hairpin molecules at single-nucleotide resolution using
an ion channel, Nature Biotech. 19, 248-252 (2001).
8. Meller, A., Nivon, L., Branton, D., Voltage-driven DNA translocations through a nanopore,
Phys. Rev. Lett. 86, 3435-3438 (2001).
9. Meller, A., Branton, D., Single molecule measurements of DNA transport through a nanopore,
Electrophoresis 23, 2583-2591 (2002).
10. Deamer, D.W., Branton, D., Characterization of nucleic acids by nanopore analysis, Acc.
Chem. Res. 35, 817-825 (2002).
11. Li, J., Gershow, M., Stein, D., Brandin, E., Golovchenko, J.A., DNA molecules and
configurations in a solid-state nanopore microscope, Nature materials 2, 611-615 (2003).
12. Heng, J.B., Dimitrov, V., Grinkova, Y.V., Ho, C., Kim, T., Muller, D., Sligar, S., Sorsch, T.,
Twesten, R., Timp, R., Timp, G., The detection of DNA using a silicon nanopore, IEDM Tech.
Digest 8, 767-770 (2003).
13. Heng, J.B., Ho, C., Kim, T., Timp, R., Aksimentiev, A., Grinkova, Y.V., Sligar, S., Schulten,
K., Timp, G., Sizing DNA using an artificial nanopore, Biophys. J. 87, 2905-2911 (2004).
14. Ho, C., Qiao, R., Heng, J.B., Chatterjee, A., Timp, R.J., Aluru, N.R., Timp, G., Electrolytic
transport through a synthetic nanometer-diameter pore, PNAS 102, 10445-10450 (2005).
15. Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W., Dekker, C., Fabrication of solid-state
nanopores with single-nanometer precision, Nature Materials 2, 537-540 (2003).
16. Chang, H., Kosari, F., Andreadakis, G., Alam, M.A., Vasmatzis, G., Bashir, R., DNA-
mediated fluctuations in ionic current through silicon oxide nanopore channels, Nano Lett.
4, 1551-1556 (2004).
17. Aksimentiev, A., Heng, J.B., Timp, G., Schulten, K., Microscopic kinetics of DNA transloca-
tion through synthetic nanopores, Biophys. J. 87, 2086-2097 (2004).
18. Heng, J.B., Aksimentiev, A., Ho, C., Dimitrov, V., Sorsch, T., Miner, J., Mansfield, W.,
Schulten, K., Timp, G., Beyond the gene chip, Bell Labs Tech. J. 10, 5-22 (2005).
Search WWH ::




Custom Search