Environmental Engineering Reference
In-Depth Information
The. interlaminar. shear. stresses. for. inner. web. τ xz h . can. be. found. using.
Equation.(2.47).and.Equation.(2.48).
h = Q
81
1
3a (b - 1 + 4q)] - k
τ
{ - 2k(y -
α
)(y - )[y +
β
xz
λ
Q
2
2
(y -
β
=
λ
x ) -
(y -
α
) (y
- )
β
;
.
.
(2.48)
21
= - Qx
4I
1
3a
τ
(
y +
(
b -
1
+
4
q
)
xz
2.9.3 
Conclusions
.
1.. We.calculate.the.maximum.and.minimum.shear.stresses.in.critical.
points.on.the.boundary.between.skin.layers.and.inner.web.
.
. We.also.have.determined.the.minimum.shear.stresses.in.a.bound-
ary.between.skin.layers.and.inner.web.(spars).
.
. The. interlaminar. shear. stresses. determined. in. the. leading/trail-
ing.turbine.blade.are.within.the.shape.of.the.symmetrical.aviation.
proiles.
.
. We.recommend.installing.spars.(inner.webs).at.the.place.x.equal.1/3.
and.2/3.as.shown.in.Figure 2.17.and.Figure 2.21.
.
2.. The. traditional. method. of. distribution. of. shear. stresses. with. the.
maximum.on.the.neutral.axis.and.minimum.on.the.contour.proile.
does.not.work.according.to.the.formula.by.Djuravsky.
.
3.. The.interlaminar.shear.stresses.inside.the.ield.on.the.neutral.axis.
were.equal.to.zero.and.matched.them.to.the.contour.of.the.shape.
of.the.proile.
.
4.. For.stress,.the.function.was.found.satisfactory.in.the.boundary.con-
ditions.and.the.shear.stress.distribution.between.the.outside.prepreg.
layers.and.the.spars.in.the.case.of.a.simultaneously.acting.bending.
moment.and.a.twisting.transverse.force.
2.10
SkinStiffnessandThicknessBladeCalculation
2.10.1 
Introduction
The.ibers.and.the.matrix.are.combined.into.wind.turbine.blades..The.princi-
pal.design.consists.of.selected.shells.and.core.materials,.which.carry.propor-
tional.loads.that.are.created.by.bending.and.torsion.moments.
 
Search WWH ::




Custom Search