Environmental Engineering Reference
In-Depth Information
displacement.x.will.be:
.
x.=.A.cosϕ.sinϖt.+.Asinϕ.cosϖt.
(5.31)
or.x.=.Asin(ϖt.+.ϕ)..We.replace.circular.frequency.ω.=.2πf,.where.f.is.a.motion.
frequency,.so:
.
x.=.sin(2πf.+.ϕ)..
.(5.32)
and:
1 2
/
1
2
Q
m
11
f
=
.(5.33)
.
.
π
By.differentiating.Equation.(5.33),.we.can.determine.velocity.and.accelera-
tion.of.the.longitudinal.vibration:
.
V.=.(2πf.+.ϕ).cos(2πf.+.ϕ).
(5.34)
.
a.=.-(2πf.+.ϕ) 2 .sin(2πf.+.ϕ).
(5.35)
The.equation.for.force.vibration.with.damping.in.the.longitudinal.direc-
tion.becomes:
2
=
= (
)
m
+
δ
+
Q x
L - D - W
sin
θ
s
in t .
.
(5.36)
11
2
x
x
Here:
m.is.a.mass.of.a.rotor.blade;
δ.is.a.critical.damping.coeficient.
The.particular.solution.that.applies.to.the.steady-state.vibration.of.the.heli-
copter.should.be.a.harmonic.function.of.time,.such.as: 9 .
.
.
x p. =.Asin(Ωt.-.ϕ).
(5.37)
where.A.and.ϕ.are.constant.
Substituting.x p. in.Equation.(5.37),.we.get:
-mΩ 2 Asin(Ωt-ϕ).+.δΩAcos(Ωt.-.ϕ).+.Q 11 Asin(Ωt.-.ϕ)=(T.-.D.-.W.sin.θ).sinΩt
.
.
.(5.38)
Submitting.two.boundary.conditions.Ωt.-.ϕ.=.0.or.Ωt.-.ϕ.=.π/2.results.in:
Search WWH ::




Custom Search