Biology Reference
In-Depth Information
Keller, R. E., 1980. The cellular basis of epiboly: An SEM study of deep-cell rearrangement
during gastrulation in Xenopus laevis. J. Embryol. Exp. Morph. 60: 201-234.
Keller, R., 1984. The cellular basis of gastrulation in Xenopus laevis: active, postinvolution
convergence and extension by mediolateral interdigitation. Am. Zool. 24: 589-603.
Keller, R. E., 1986. The cellular basis of amphibian gastrulation. In Developmental Biology:
A Comprehensive Synthesis, Vol. 2. The Cellular Basis of Morphogenesis (Browder, L.
Ed.). Plenum Press, N.Y., pp. 241-327.
Keller, R., 2002. Shaping the vertebrate body plan by polarized embryonic cell movements.
Science 298: 1950-1954.
Keller, R. E. and Schoenwolf, G. C., 1977. An SEM study of cellular morphology, contact,
and arrangement, as related to gastrulation in Xenopus laevis. Wilhelm Roux's Arch. 182:
165-186.
Keller, R. E. and Danilchik, M., 1988. Regional expression, pattern and timing of con-
vergence and extension during gastrulation of Xenopus laevis. Development 103: 193-209.
Keller, R. E., Danilchik, M., Gimlich, R. and Shih, J., 1985. The function and mechanism
of convergent extension during gastrulation in Xenopus laevis. J. Embyol. Exp. Morph.
89: 185-209.
Keller, R. E., Cooper, M., Danilchik, M., Tibbetts, P. and Wilson, P., 1989. Cell
intercalation during notochord development in Xenopus laevis. J. Exp. Zool. 251: 134-
154.
Keller, R., Shih, J., Wilson, P. and Sater, A., 1991. Pattern and function of cell motility and
cell interactions during convergence and extension in Xenopus.In49th Symp. Soc.
Develop. Biol. Cell-Cell Interactions in Early Development (Gerhart, J. Ed.). Wiley and
Sons, N. Y., pp. 93-107.
Keller, R., Shih, J. and Domingo, C., 1992a. The patterning and functioning of protrusive
activity during convergence and extension of the Xenopus organizer. Development (Suppl
1992): pp. 81-91.
Keller, R., Shih, J. and Sater, A., 1992b. The cellular basis of the convergence and
extension of the Xenopus neural plate. Develop. Dynamics 193: 199-217.
Keller, R., Davidson, L., Edlund, A., Elul, T., et al., 2000. Mechanisms of convergence and
extension by cell intercalation. Phil. Trans. R. Soc. Lond. B 355: 897-922.
Kim, S.-H., Yamamoto, A., Bouwmeester, T., Agius, E. and DeRobertis, E. M., 1998. The
role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm
during Xenopus gastrulation. Development 125: 4681-4691.
Kolega, J., 1986. Effects of mechanical tension on protrusive activity and microfilament
and intermediate filament organization in an epidermal epithelium moving in culture.
J. Cell Biol. 102: 1400-1411.
Komazaki, S., 1988. Factors related to the initiation of cell migration along the inner
surface of the blastocoelic wall during amphibian gastrulation. Cell Differ. 24: 25-32.
Kuroda, H., Inui, M., Sugimoto, K., Hayata, T. and Asashima, M., 2002. Axial
protocadherin is a mediator of prenotochord cell sorting in Xenopus. Develop. Biol. 244:
267-277.
Lawson, A. and Schoenwolf, G. C., 2001a. Cell populations and morphogenetic
movements underlying formation of the avian primitive streak and organizer. Genesis
29: 188-195.
Lawson, A. and Schoenwolf, G. C., 2001b. New insights into critical events of avian
gastrulation. Anat. Rec. 262: 238-252.
Marlow, F., Topczewski, J., Sepich, D. and Solnica-Krezel, L., 2002. Zebrafish Rho kinase
2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and
extension movements. Curr. Biol. 12: 876-884.
Search WWH ::




Custom Search