Biology Reference
In-Depth Information
Adler, P., Taylor, J. and Charlton, J., 2000. The domineering non-autonomy of frizzled and
Van Gogh clones in the Drosophila wing is a consequence of a disruption in local
signaling. Mech. Dev. 96: 197-207.
Brieher, W. M. and Gumbiner, B. M., 1994. Regulation of C-Cadherin function during
activin induced morphogenesis of Xenopus animal caps. J. Cell Biol. 126: 519-526.
Choi, S.-C. and Han, J.-K., 2002. Xenopus Cdc42 regulates convergent extension
movements during gastrulation through Wnt/Ca 2+ signalling pathway. Develop. Biol.
244: 342-357.
Darribere, T., Guida, K., Larjava, H., Johnson, K. E., et al., 1990. In vivo analyses of
integrin b 1 subunit function in fibronectin matrix assembly. J. Cell Biol. 110: 1813-1823.
Darken, R., Scola, A. M., Rakeman, S. S., Das, G., Mlodzik, M. and Wilson, P., 2002.
The planar polarity gene strabismus regulates convergent extension movements in
Xenopus. EMBO J. 21: 976-985.
Davidson, L., Hoffstrom, B., Keller, R. and DeSimone, D., 2002. Mesendoderm extension
and mantle closure in Xenopus laevis gastrulation: Combined roles for integrin a5b1,
fibronectin, and tissue geometry. Develop. Biol. 242: 109-129.
Djiane, A., Riou, J., Umbhauer, M., Boucaut, J. and Shi, D., 2000. Role of frizzled 7 in the
regulation of convergent extension movements during gastrulation in Xenopus laevis.
Development 127: 3091-3100.
Dormann, D., Weijer, G., Parent, C. A., Devreotes, P. N. and Weijer, C. J., 2002.
Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development.
Curr. Biol. 12: 1178-1188.
Elsdale, T. and Wasoff, F., 1976. Fibroblast cultures and dermatoglyphics: the topology of
two planar patterns. Wilhelm Roux's Arch. Develop. Biol. 180: 121-147.
Elul, T., Koehl, M. and Keller, R., 1997. Cellular mechanism underlying neural convergent
extension in Xenopus laevis embryos. Develop. Biol. 191: 243-258.
Elul, T. and Keller, R., 2000. Monopolar protrusive activity: a new morphogenic cell
behavior in the neural plate dependent on vertical interactions with the mesoderm in
Xenopus. Develop. Biol. 224: 3-19.
Euteneuer, U. and Schliwa, M., 1986. The function of microtubules in directional cell
movement. Ann NY Acad. Sci. 466: 867-886.
Ezin, M., Skoglund, P. and Keller, R., 2003. The midline (notochord and notoplate)
patterns cell motility underlying convergence and extension of the Xenopus neural plate.
Develop. Biol. 256: 100-113.
Glickman, N., Kimmel, C., Jones, M. and Adams, R., 2003. Shaping the zebrafish
notochord. Development, 130: 873-887.
Goto, T. and Keller, R., 2002. The planar cell polarity gene Strabismus regulates
convergence and extension and neural fold closure in Xenopus. Dev. Biol. 247: 165-181.
Habas, R., Kato, Y. and He, X., 2002. Wnt/Frizzled activation of Rho regulates vertebrate
gastrulation and requires a novel Formin homology protein, Daam1. Cell 107: 843-854.
Harris, A. K., Wild, P. and Stopak, D., 1980. Silicone rubber substrata: a new wrinkle in
the study of cell locomotion. Science 208: 177-179.
Heisenberg, C. P., Tada, M., Rauch, G.-J., Saude, L., et al., 2000. Siberblick/Wnt11
activity mediates convergent extension movements during zebrafish gastrulation. Nature
405: 76-81.
Jessen, J., Topczewski, J., Bingham, S., Sepich, D., et al., 2002. Zebrafish trilobite identifies
new roles for Strabismus in gastrulation and neuronal movements. Nat. Cell Biol. 4: 610-
615.
Keller, R. E., 1978. Time-lapse cinemicrographic analysis of superficial cell behavior during
and prior to gastrulation in Xenopus laevis. J. Morph. 157: 223-248.
Search WWH ::




Custom Search