Biology Reference
In-Depth Information
Hopkins, C. R., Gibson, A., Shipman, M., Strickland, D. K. and Trowbridge, I. S., 1994.
In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the
pericentriolar area, and then routed to the plasma membrane of the leading lamella. J.
Cell Biol. 125: 1265-1274.
Infante, A. S., Stein, M. S., Zhai, Y., Borisy, G. G. and Gundersen, G. G., 2000.
Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J.
Cell Sci. 113 (22): 3907-3919.
Ishizaki, T., Morishima, Y., Okamoto, M., Furuyashiki, T., et al., 2001. Coordination
of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat. Cell Biol. 3:
8-14.
Kaverina, I., Rottner, K. and Small, J. V., 1998. Targeting, capture, and stabilization of
microtubules at early focal adhesions. J. Cell Biol. 142: 181-190.
Kaverina, I., Krylyshkina, O. and Small, J. V., 1999. Microtubule targeting of substrate
contacts promotes their relaxation and dissociation. J. Cell Biol. 146: 1033-1044.
Kjoller, L. and Hall, A., 1999. Signaling to Rho GTPases. Exp. Cell Res. 253: 166-179.
Komarova, Y. A., Akhmanova, A. S., Kojima, S., Galjart, N. and Borisy, G. G., 2002.
Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159: 589-
599.
Krylyshkina, O., Kaverina, I., Kranewitter, W., Steffen, W., et al., 2002. Modulation of
substrate adhesion dynamics via microtubule targeting requires kinesin-1. J. Cell Biol.
156: 349-359.
Larsson, N., Marklund, U., Gradin, H. M., Brattsand, G. and Gullberg, M., 1997. Control
of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite
phosphorylation during mitosis. Mol. Cell Biol. 17: 5530-5539.
Lin, C. H., Espreafico, E. M., Mooseker, M. S. and Forscher, P., 1997. Myosin drives
retrograde F-actin flow in neuronal growth cones. Biol. Bull. 192: 183-185.
Lin, S. X., Gundersen, G. G. and Maxfield, F. R., 2002. Export from pericentriolar
endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu)
microtubules and kinesin. Mol. Biol. Cell 13: 96-109.
Malech, H. L., Root, R. K. and Gallin, J. I., 1977. Structural analysis of human neutrophil
migration. Centriole, microtubule, and microfilament orientation and function during
chemotaxis. J. Cell Biol. 75: 666-693.
Mimori-Kiyosue, Y., Shiina, N. and Tsukita, S., 2000. Adenomatous polyposis coli (APC)
protein moves along microtubules and concentrates at their growing ends in epithelial
cells. J. Cell Biol. 148: 505-518.
Mitchison, T. and Kirschner, M., 1984. Dynamic instability of microtubule growth. Nature
312: 237-242.
Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. and Nelson, W. J., 1996. The
adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane
sites involved in active cell migration. J. Cell Biol. 134: 165-179.
Nobes, C. D. and Hall, A., 1999. Rho GTPases control polarity, protrusion, and adhesion
during cell movement. J. Cell Biol. 144: 1235-1244.
Palazzo, A. F., Joseph, H. L., Chen, Y. J., Dujardin, D. L., et al., 2001a. Cdc42, dynein,
and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule
stabilization. Curr. Biol. 11: 1536-1541.
Palazzo, A. F., Cook, T. A., Alberts, A. S. and Gundersen, G. G., 2001b. mDia mediates
Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 3: 723-
729.
Perez, F., Diamantopoulos, G. S., Stalder, R. and Kreis, T. E., 1999. CLIP-170 highlights
growing microtubule ends in vivo. Cell 96: 517-527.
Search WWH ::




Custom Search