Biology Reference
In-Depth Information
Itoh, R. E., Kurokawa, K., Ohba, Y., Yoshizaki, H., et al., 2002. Activation of rac and
cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule
probes in the membrane of living cells. Mol. Cell Biol. 22: 6582-6591.
Ivanova, O. Y., Svitkina, T. M., Vasiliev, J. M. and Gelfand, I. M., 1980. Effect of colcemid
on the distribution of pseudopodial activity in fibroblasts. Microtubule-independent
stabilization of cell surface. Exp. Cell Res. 128: 457-461.
Kaverina, I., Rottner, K. and Small, J. V., 1998. Targeting, capture, and stabilization of
microtubules at early focal adhesions. J. Cell Biol. 142: 181-190.
Kaverina, I., Krylyshkina, O. and Small, J. V., 1999. Microtubule targeting of substrate
contacts promotes their relaxation and dissociation. J. Cell Biol. 146: 1033-1044.
Kaverina, I., Krylyshkina, O., Gimona, M., Beningo, K., et al., 2000. Enforced
polarisation and locomotion of fibroblasts lacking microtubules. Curr. Biol. 10: 739-742.
Kaverina, I., Krylyshkina, O., Beningo, K., Anderson, K., et al., 2002. Tensile stress
stimulates microtubule outgrowth in living cells. J. Cell Sci. 115: 2283-2291.
Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D. and Borisy, G. G., 1997.
Microtubule release from the centrosome. Proc. Natl. Acad. Sci. USA 94: 5078-5083.
Keller, H. U. and Niggli, V., 1993. Colchicine-induced stimulation of PMN motility related
to cytoskeletal changes in actin, alpha-actinin, and myosin. Cell Motil. Cytoskeleton 25:
10-18.
Khawaja, S., Gundersen, G. G. and Bulinski, J. C., 1988. Enhanced stability of
microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination
level. J. Cell Biol. 106: 141-149.
Kimura, K., Ito, M., Amano, M., Chihara, K., et al., 1996. Regulation of myosin
phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245-248.
Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. and Hyman, A. A., 2001.
Reconstitution of physiological microtubule dynamics using purified components.
Science 294: 1340-1343.
Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D. and Geiger, B., 2003. Live-cell
monitoring of tyrosine phosphorylation in focal adhesions following microtubule
disruption. J. Cell Sci. 116: 975-986.
Kjoller, L. and Hall, A., 1999. Signaling to Rho GTPases. Exp. Cell Res. 253: 166-179.
Kolodney, M. S. and Elson, E. L., 1995. Contraction due to microtubule disruption is
associated with increased phosphorylation of myosin regulatory light chain. Proc. Natl.
Acad. Sci. USA 92: 10 252-10 256.
Komarova, Y. A., Akhmanova, A. S., Kojima, S., Galjart, N. and Borisy, G. G., 2002.
Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159:
589-599.
Komarova, Y. A., Vorobjev, I. A. and Borisy, G. G., 2002. Life cycle of MTs: persistent
growth in the cell interior, asymmetric transition frequencies and effects of the cell
boundary. J. Cell Sci. 115: 3527-3539.
Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., et al., 2000. Localized
Rac activation dynamics visualized in living cells. Science 290: 333-337.
Lauffenburger, D. A. and Horwitz, A. F., 1996. Cell migration: a physically integrated
molecular process. Cell 84: 359-369.
Lee, J. and Jacobson, K., 1997. The composition and dynamics of cell-substratum
adhesions in locomoting fish keratocytes. J. Cell Sci. 110: 2833-2844.
Littlefield, R. and Fowler, V. M., 2002. A minor actin catastrophe. Nat. Cell Biol. 4: E209-
E211.
Lo, C. M., Wang, H. B., Dembo, M. and Wang, Y. L., 2000. Cell movement is guided by
the rigidity of the substrate. Biophys. J. 79: 144-152.
Search WWH ::




Custom Search